MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  offveqb Unicode version

Theorem offveqb 6099
Description: Equivalent expressions for equality with a function operation. (Contributed by NM, 9-Oct-2014.) (Proof shortened by Mario Carneiro, 5-Dec-2016.)
Hypotheses
Ref Expression
offveq.1  |-  ( ph  ->  A  e.  V )
offveq.2  |-  ( ph  ->  F  Fn  A )
offveq.3  |-  ( ph  ->  G  Fn  A )
offveq.4  |-  ( ph  ->  H  Fn  A )
offveq.5  |-  ( (
ph  /\  x  e.  A )  ->  ( F `  x )  =  B )
offveq.6  |-  ( (
ph  /\  x  e.  A )  ->  ( G `  x )  =  C )
Assertion
Ref Expression
offveqb  |-  ( ph  ->  ( H  =  ( F  o F R G )  <->  A. x  e.  A  ( H `  x )  =  ( B R C ) ) )
Distinct variable groups:    x, A    x, F    x, G    x, H    ph, x    x, R
Allowed substitution hints:    B( x)    C( x)    V( x)

Proof of Theorem offveqb
StepHypRef Expression
1 offveq.4 . . . 4  |-  ( ph  ->  H  Fn  A )
2 dffn5 5568 . . . 4  |-  ( H  Fn  A  <->  H  =  ( x  e.  A  |->  ( H `  x
) ) )
31, 2sylib 188 . . 3  |-  ( ph  ->  H  =  ( x  e.  A  |->  ( H `
 x ) ) )
4 offveq.2 . . . 4  |-  ( ph  ->  F  Fn  A )
5 offveq.3 . . . 4  |-  ( ph  ->  G  Fn  A )
6 offveq.1 . . . 4  |-  ( ph  ->  A  e.  V )
7 inidm 3378 . . . 4  |-  ( A  i^i  A )  =  A
8 offveq.5 . . . 4  |-  ( (
ph  /\  x  e.  A )  ->  ( F `  x )  =  B )
9 offveq.6 . . . 4  |-  ( (
ph  /\  x  e.  A )  ->  ( G `  x )  =  C )
104, 5, 6, 6, 7, 8, 9offval 6085 . . 3  |-  ( ph  ->  ( F  o F R G )  =  ( x  e.  A  |->  ( B R C ) ) )
113, 10eqeq12d 2297 . 2  |-  ( ph  ->  ( H  =  ( F  o F R G )  <->  ( x  e.  A  |->  ( H `
 x ) )  =  ( x  e.  A  |->  ( B R C ) ) ) )
12 fvex 5539 . . . . 5  |-  ( H `
 x )  e. 
_V
1312a1i 10 . . . 4  |-  ( ph  ->  ( H `  x
)  e.  _V )
1413ralrimivw 2627 . . 3  |-  ( ph  ->  A. x  e.  A  ( H `  x )  e.  _V )
15 mpteqb 5614 . . 3  |-  ( A. x  e.  A  ( H `  x )  e.  _V  ->  ( (
x  e.  A  |->  ( H `  x ) )  =  ( x  e.  A  |->  ( B R C ) )  <->  A. x  e.  A  ( H `  x )  =  ( B R C ) ) )
1614, 15syl 15 . 2  |-  ( ph  ->  ( ( x  e.  A  |->  ( H `  x ) )  =  ( x  e.  A  |->  ( B R C ) )  <->  A. x  e.  A  ( H `  x )  =  ( B R C ) ) )
1711, 16bitrd 244 1  |-  ( ph  ->  ( H  =  ( F  o F R G )  <->  A. x  e.  A  ( H `  x )  =  ( B R C ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    = wceq 1623    e. wcel 1684   A.wral 2543   _Vcvv 2788    e. cmpt 4077    Fn wfn 5250   ` cfv 5255  (class class class)co 5858    o Fcof 6076
This theorem is referenced by:  eqlkr2  28663
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-rex 2549  df-reu 2550  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-sn 3646  df-pr 3647  df-op 3649  df-uni 3828  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-id 4309  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-of 6078
  Copyright terms: Public domain W3C validator