Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ofmpteq Unicode version

Theorem ofmpteq 26900
Description: Value of a pointwise operation on two functions defined using maps-to notation. (Contributed by Stefan O'Rear, 5-Oct-2014.)
Assertion
Ref Expression
ofmpteq  |-  ( ( A  e.  V  /\  ( x  e.  A  |->  B )  Fn  A  /\  ( x  e.  A  |->  C )  Fn  A
)  ->  ( (
x  e.  A  |->  B )  o F R ( x  e.  A  |->  C ) )  =  ( x  e.  A  |->  ( B R C ) ) )
Distinct variable groups:    x, A    x, R
Allowed substitution hints:    B( x)    C( x)    V( x)

Proof of Theorem ofmpteq
Dummy variable  a is distinct from all other variables.
StepHypRef Expression
1 simp1 955 . . 3  |-  ( ( A  e.  V  /\  ( x  e.  A  |->  B )  Fn  A  /\  ( x  e.  A  |->  C )  Fn  A
)  ->  A  e.  V )
2 simpr 447 . . . 4  |-  ( ( ( A  e.  V  /\  ( x  e.  A  |->  B )  Fn  A  /\  ( x  e.  A  |->  C )  Fn  A
)  /\  a  e.  A )  ->  a  e.  A )
3 simpl2 959 . . . . 5  |-  ( ( ( A  e.  V  /\  ( x  e.  A  |->  B )  Fn  A  /\  ( x  e.  A  |->  C )  Fn  A
)  /\  a  e.  A )  ->  (
x  e.  A  |->  B )  Fn  A )
4 eqid 2296 . . . . . 6  |-  ( x  e.  A  |->  B )  =  ( x  e.  A  |->  B )
54mptfng 5385 . . . . 5  |-  ( A. x  e.  A  B  e.  _V  <->  ( x  e.  A  |->  B )  Fn  A )
63, 5sylibr 203 . . . 4  |-  ( ( ( A  e.  V  /\  ( x  e.  A  |->  B )  Fn  A  /\  ( x  e.  A  |->  C )  Fn  A
)  /\  a  e.  A )  ->  A. x  e.  A  B  e.  _V )
7 nfcsb1v 3126 . . . . . 6  |-  F/_ x [_ a  /  x ]_ B
87nfel1 2442 . . . . 5  |-  F/ x [_ a  /  x ]_ B  e.  _V
9 csbeq1a 3102 . . . . . 6  |-  ( x  =  a  ->  B  =  [_ a  /  x ]_ B )
109eleq1d 2362 . . . . 5  |-  ( x  =  a  ->  ( B  e.  _V  <->  [_ a  /  x ]_ B  e.  _V ) )
118, 10rspc 2891 . . . 4  |-  ( a  e.  A  ->  ( A. x  e.  A  B  e.  _V  ->  [_ a  /  x ]_ B  e.  _V )
)
122, 6, 11sylc 56 . . 3  |-  ( ( ( A  e.  V  /\  ( x  e.  A  |->  B )  Fn  A  /\  ( x  e.  A  |->  C )  Fn  A
)  /\  a  e.  A )  ->  [_ a  /  x ]_ B  e. 
_V )
13 simpl3 960 . . . . 5  |-  ( ( ( A  e.  V  /\  ( x  e.  A  |->  B )  Fn  A  /\  ( x  e.  A  |->  C )  Fn  A
)  /\  a  e.  A )  ->  (
x  e.  A  |->  C )  Fn  A )
14 eqid 2296 . . . . . 6  |-  ( x  e.  A  |->  C )  =  ( x  e.  A  |->  C )
1514mptfng 5385 . . . . 5  |-  ( A. x  e.  A  C  e.  _V  <->  ( x  e.  A  |->  C )  Fn  A )
1613, 15sylibr 203 . . . 4  |-  ( ( ( A  e.  V  /\  ( x  e.  A  |->  B )  Fn  A  /\  ( x  e.  A  |->  C )  Fn  A
)  /\  a  e.  A )  ->  A. x  e.  A  C  e.  _V )
17 nfcsb1v 3126 . . . . . 6  |-  F/_ x [_ a  /  x ]_ C
1817nfel1 2442 . . . . 5  |-  F/ x [_ a  /  x ]_ C  e.  _V
19 csbeq1a 3102 . . . . . 6  |-  ( x  =  a  ->  C  =  [_ a  /  x ]_ C )
2019eleq1d 2362 . . . . 5  |-  ( x  =  a  ->  ( C  e.  _V  <->  [_ a  /  x ]_ C  e.  _V ) )
2118, 20rspc 2891 . . . 4  |-  ( a  e.  A  ->  ( A. x  e.  A  C  e.  _V  ->  [_ a  /  x ]_ C  e.  _V )
)
222, 16, 21sylc 56 . . 3  |-  ( ( ( A  e.  V  /\  ( x  e.  A  |->  B )  Fn  A  /\  ( x  e.  A  |->  C )  Fn  A
)  /\  a  e.  A )  ->  [_ a  /  x ]_ C  e. 
_V )
23 nfcv 2432 . . . . 5  |-  F/_ a B
2423, 7, 9cbvmpt 4126 . . . 4  |-  ( x  e.  A  |->  B )  =  ( a  e.  A  |->  [_ a  /  x ]_ B )
2524a1i 10 . . 3  |-  ( ( A  e.  V  /\  ( x  e.  A  |->  B )  Fn  A  /\  ( x  e.  A  |->  C )  Fn  A
)  ->  ( x  e.  A  |->  B )  =  ( a  e.  A  |->  [_ a  /  x ]_ B ) )
26 nfcv 2432 . . . . 5  |-  F/_ a C
2726, 17, 19cbvmpt 4126 . . . 4  |-  ( x  e.  A  |->  C )  =  ( a  e.  A  |->  [_ a  /  x ]_ C )
2827a1i 10 . . 3  |-  ( ( A  e.  V  /\  ( x  e.  A  |->  B )  Fn  A  /\  ( x  e.  A  |->  C )  Fn  A
)  ->  ( x  e.  A  |->  C )  =  ( a  e.  A  |->  [_ a  /  x ]_ C ) )
291, 12, 22, 25, 28offval2 6111 . 2  |-  ( ( A  e.  V  /\  ( x  e.  A  |->  B )  Fn  A  /\  ( x  e.  A  |->  C )  Fn  A
)  ->  ( (
x  e.  A  |->  B )  o F R ( x  e.  A  |->  C ) )  =  ( a  e.  A  |->  ( [_ a  /  x ]_ B R [_ a  /  x ]_ C
) ) )
30 nfcv 2432 . . 3  |-  F/_ a
( B R C )
31 nfcv 2432 . . . 4  |-  F/_ x R
327, 31, 17nfov 5897 . . 3  |-  F/_ x
( [_ a  /  x ]_ B R [_ a  /  x ]_ C )
339, 19oveq12d 5892 . . 3  |-  ( x  =  a  ->  ( B R C )  =  ( [_ a  /  x ]_ B R [_ a  /  x ]_ C
) )
3430, 32, 33cbvmpt 4126 . 2  |-  ( x  e.  A  |->  ( B R C ) )  =  ( a  e.  A  |->  ( [_ a  /  x ]_ B R
[_ a  /  x ]_ C ) )
3529, 34syl6eqr 2346 1  |-  ( ( A  e.  V  /\  ( x  e.  A  |->  B )  Fn  A  /\  ( x  e.  A  |->  C )  Fn  A
)  ->  ( (
x  e.  A  |->  B )  o F R ( x  e.  A  |->  C ) )  =  ( x  e.  A  |->  ( B R C ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    /\ w3a 934    = wceq 1632    e. wcel 1696   A.wral 2556   _Vcvv 2801   [_csb 3094    e. cmpt 4093    Fn wfn 5266  (class class class)co 5874    o Fcof 6092
This theorem is referenced by:  mzpaddmpt  26922  mzpmulmpt  26923  mzpcompact2lem  26932
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-rep 4147  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-ral 2561  df-rex 2562  df-reu 2563  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3469  df-if 3579  df-sn 3659  df-pr 3660  df-op 3662  df-uni 3844  df-iun 3923  df-br 4040  df-opab 4094  df-mpt 4095  df-id 4325  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-ov 5877  df-oprab 5878  df-mpt2 5879  df-of 6094
  Copyright terms: Public domain W3C validator