MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ofres Unicode version

Theorem ofres 6260
Description: Restrict the operands of a function operation to the same domain as that of the operation itself. (Contributed by Mario Carneiro, 15-Sep-2014.)
Hypotheses
Ref Expression
ofres.1  |-  ( ph  ->  F  Fn  A )
ofres.2  |-  ( ph  ->  G  Fn  B )
ofres.3  |-  ( ph  ->  A  e.  V )
ofres.4  |-  ( ph  ->  B  e.  W )
ofres.5  |-  ( A  i^i  B )  =  C
Assertion
Ref Expression
ofres  |-  ( ph  ->  ( F  o F R G )  =  ( ( F  |`  C )  o F R ( G  |`  C ) ) )

Proof of Theorem ofres
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 ofres.1 . . 3  |-  ( ph  ->  F  Fn  A )
2 ofres.2 . . 3  |-  ( ph  ->  G  Fn  B )
3 ofres.3 . . 3  |-  ( ph  ->  A  e.  V )
4 ofres.4 . . 3  |-  ( ph  ->  B  e.  W )
5 ofres.5 . . 3  |-  ( A  i^i  B )  =  C
6 eqidd 2388 . . 3  |-  ( (
ph  /\  x  e.  A )  ->  ( F `  x )  =  ( F `  x ) )
7 eqidd 2388 . . 3  |-  ( (
ph  /\  x  e.  B )  ->  ( G `  x )  =  ( G `  x ) )
81, 2, 3, 4, 5, 6, 7offval 6251 . 2  |-  ( ph  ->  ( F  o F R G )  =  ( x  e.  C  |->  ( ( F `  x ) R ( G `  x ) ) ) )
9 inss1 3504 . . . . 5  |-  ( A  i^i  B )  C_  A
105, 9eqsstr3i 3322 . . . 4  |-  C  C_  A
11 fnssres 5498 . . . 4  |-  ( ( F  Fn  A  /\  C  C_  A )  -> 
( F  |`  C )  Fn  C )
121, 10, 11sylancl 644 . . 3  |-  ( ph  ->  ( F  |`  C )  Fn  C )
13 inss2 3505 . . . . 5  |-  ( A  i^i  B )  C_  B
145, 13eqsstr3i 3322 . . . 4  |-  C  C_  B
15 fnssres 5498 . . . 4  |-  ( ( G  Fn  B  /\  C  C_  B )  -> 
( G  |`  C )  Fn  C )
162, 14, 15sylancl 644 . . 3  |-  ( ph  ->  ( G  |`  C )  Fn  C )
17 ssexg 4290 . . . 4  |-  ( ( C  C_  A  /\  A  e.  V )  ->  C  e.  _V )
1810, 3, 17sylancr 645 . . 3  |-  ( ph  ->  C  e.  _V )
19 inidm 3493 . . 3  |-  ( C  i^i  C )  =  C
20 fvres 5685 . . . 4  |-  ( x  e.  C  ->  (
( F  |`  C ) `
 x )  =  ( F `  x
) )
2120adantl 453 . . 3  |-  ( (
ph  /\  x  e.  C )  ->  (
( F  |`  C ) `
 x )  =  ( F `  x
) )
22 fvres 5685 . . . 4  |-  ( x  e.  C  ->  (
( G  |`  C ) `
 x )  =  ( G `  x
) )
2322adantl 453 . . 3  |-  ( (
ph  /\  x  e.  C )  ->  (
( G  |`  C ) `
 x )  =  ( G `  x
) )
2412, 16, 18, 18, 19, 21, 23offval 6251 . 2  |-  ( ph  ->  ( ( F  |`  C )  o F R ( G  |`  C ) )  =  ( x  e.  C  |->  ( ( F `  x ) R ( G `  x ) ) ) )
258, 24eqtr4d 2422 1  |-  ( ph  ->  ( F  o F R G )  =  ( ( F  |`  C )  o F R ( G  |`  C ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359    = wceq 1649    e. wcel 1717   _Vcvv 2899    i^i cin 3262    C_ wss 3263    e. cmpt 4207    |` cres 4820    Fn wfn 5389   ` cfv 5394  (class class class)co 6020    o Fcof 6242
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-14 1721  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2368  ax-rep 4261  ax-sep 4271  ax-nul 4279  ax-pr 4344
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2242  df-mo 2243  df-clab 2374  df-cleq 2380  df-clel 2383  df-nfc 2512  df-ne 2552  df-ral 2654  df-rex 2655  df-reu 2656  df-rab 2658  df-v 2901  df-sbc 3105  df-csb 3195  df-dif 3266  df-un 3268  df-in 3270  df-ss 3277  df-nul 3572  df-if 3683  df-sn 3763  df-pr 3764  df-op 3766  df-uni 3958  df-iun 4037  df-br 4154  df-opab 4208  df-mpt 4209  df-id 4439  df-xp 4824  df-rel 4825  df-cnv 4826  df-co 4827  df-dm 4828  df-rn 4829  df-res 4830  df-ima 4831  df-iota 5358  df-fun 5396  df-fn 5397  df-f 5398  df-f1 5399  df-fo 5400  df-f1o 5401  df-fv 5402  df-ov 6023  df-oprab 6024  df-mpt2 6025  df-of 6244
  Copyright terms: Public domain W3C validator