MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ofrfval Unicode version

Theorem ofrfval 6086
Description: Value of a relation applied to two functions. (Contributed by Mario Carneiro, 28-Jul-2014.)
Hypotheses
Ref Expression
offval.1  |-  ( ph  ->  F  Fn  A )
offval.2  |-  ( ph  ->  G  Fn  B )
offval.3  |-  ( ph  ->  A  e.  V )
offval.4  |-  ( ph  ->  B  e.  W )
offval.5  |-  ( A  i^i  B )  =  S
offval.6  |-  ( (
ph  /\  x  e.  A )  ->  ( F `  x )  =  C )
offval.7  |-  ( (
ph  /\  x  e.  B )  ->  ( G `  x )  =  D )
Assertion
Ref Expression
ofrfval  |-  ( ph  ->  ( F  o R R G  <->  A. x  e.  S  C R D ) )
Distinct variable groups:    x, A    x, F    x, G    ph, x    x, S    x, R
Allowed substitution hints:    B( x)    C( x)    D( x)    V( x)    W( x)

Proof of Theorem ofrfval
Dummy variables  f 
g are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 offval.1 . . . 4  |-  ( ph  ->  F  Fn  A )
2 offval.3 . . . 4  |-  ( ph  ->  A  e.  V )
3 fnex 5741 . . . 4  |-  ( ( F  Fn  A  /\  A  e.  V )  ->  F  e.  _V )
41, 2, 3syl2anc 642 . . 3  |-  ( ph  ->  F  e.  _V )
5 offval.2 . . . 4  |-  ( ph  ->  G  Fn  B )
6 offval.4 . . . 4  |-  ( ph  ->  B  e.  W )
7 fnex 5741 . . . 4  |-  ( ( G  Fn  B  /\  B  e.  W )  ->  G  e.  _V )
85, 6, 7syl2anc 642 . . 3  |-  ( ph  ->  G  e.  _V )
9 dmeq 4879 . . . . . 6  |-  ( f  =  F  ->  dom  f  =  dom  F )
10 dmeq 4879 . . . . . 6  |-  ( g  =  G  ->  dom  g  =  dom  G )
119, 10ineqan12d 3372 . . . . 5  |-  ( ( f  =  F  /\  g  =  G )  ->  ( dom  f  i^i 
dom  g )  =  ( dom  F  i^i  dom 
G ) )
12 fveq1 5524 . . . . . 6  |-  ( f  =  F  ->  (
f `  x )  =  ( F `  x ) )
13 fveq1 5524 . . . . . 6  |-  ( g  =  G  ->  (
g `  x )  =  ( G `  x ) )
1412, 13breqan12d 4038 . . . . 5  |-  ( ( f  =  F  /\  g  =  G )  ->  ( ( f `  x ) R ( g `  x )  <-> 
( F `  x
) R ( G `
 x ) ) )
1511, 14raleqbidv 2748 . . . 4  |-  ( ( f  =  F  /\  g  =  G )  ->  ( A. x  e.  ( dom  f  i^i 
dom  g ) ( f `  x ) R ( g `  x )  <->  A. x  e.  ( dom  F  i^i  dom 
G ) ( F `
 x ) R ( G `  x
) ) )
16 df-ofr 6079 . . . 4  |-  o R R  =  { <. f ,  g >.  |  A. x  e.  ( dom  f  i^i  dom  g )
( f `  x
) R ( g `
 x ) }
1715, 16brabga 4279 . . 3  |-  ( ( F  e.  _V  /\  G  e.  _V )  ->  ( F  o R R G  <->  A. x  e.  ( dom  F  i^i  dom 
G ) ( F `
 x ) R ( G `  x
) ) )
184, 8, 17syl2anc 642 . 2  |-  ( ph  ->  ( F  o R R G  <->  A. x  e.  ( dom  F  i^i  dom 
G ) ( F `
 x ) R ( G `  x
) ) )
19 fndm 5343 . . . . . 6  |-  ( F  Fn  A  ->  dom  F  =  A )
201, 19syl 15 . . . . 5  |-  ( ph  ->  dom  F  =  A )
21 fndm 5343 . . . . . 6  |-  ( G  Fn  B  ->  dom  G  =  B )
225, 21syl 15 . . . . 5  |-  ( ph  ->  dom  G  =  B )
2320, 22ineq12d 3371 . . . 4  |-  ( ph  ->  ( dom  F  i^i  dom 
G )  =  ( A  i^i  B ) )
24 offval.5 . . . 4  |-  ( A  i^i  B )  =  S
2523, 24syl6eq 2331 . . 3  |-  ( ph  ->  ( dom  F  i^i  dom 
G )  =  S )
2625raleqdv 2742 . 2  |-  ( ph  ->  ( A. x  e.  ( dom  F  i^i  dom 
G ) ( F `
 x ) R ( G `  x
)  <->  A. x  e.  S  ( F `  x ) R ( G `  x ) ) )
27 inss1 3389 . . . . . . 7  |-  ( A  i^i  B )  C_  A
2824, 27eqsstr3i 3209 . . . . . 6  |-  S  C_  A
2928sseli 3176 . . . . 5  |-  ( x  e.  S  ->  x  e.  A )
30 offval.6 . . . . 5  |-  ( (
ph  /\  x  e.  A )  ->  ( F `  x )  =  C )
3129, 30sylan2 460 . . . 4  |-  ( (
ph  /\  x  e.  S )  ->  ( F `  x )  =  C )
32 inss2 3390 . . . . . . 7  |-  ( A  i^i  B )  C_  B
3324, 32eqsstr3i 3209 . . . . . 6  |-  S  C_  B
3433sseli 3176 . . . . 5  |-  ( x  e.  S  ->  x  e.  B )
35 offval.7 . . . . 5  |-  ( (
ph  /\  x  e.  B )  ->  ( G `  x )  =  D )
3634, 35sylan2 460 . . . 4  |-  ( (
ph  /\  x  e.  S )  ->  ( G `  x )  =  D )
3731, 36breq12d 4036 . . 3  |-  ( (
ph  /\  x  e.  S )  ->  (
( F `  x
) R ( G `
 x )  <->  C R D ) )
3837ralbidva 2559 . 2  |-  ( ph  ->  ( A. x  e.  S  ( F `  x ) R ( G `  x )  <->  A. x  e.  S  C R D ) )
3918, 26, 383bitrd 270 1  |-  ( ph  ->  ( F  o R R G  <->  A. x  e.  S  C R D ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    = wceq 1623    e. wcel 1684   A.wral 2543   _Vcvv 2788    i^i cin 3151   class class class wbr 4023   dom cdm 4689    Fn wfn 5250   ` cfv 5255    o Rcofr 6077
This theorem is referenced by:  ofrval  6088  ofrfval2  6096  caofref  6103  caofrss  6110  caoftrn  6112  ofsubge0  9745  pwsle  13391  pwsleval  13392  psrbaglesupp  16114  psrbagcon  16117  psrbaglefi  16118  psrlidm  16148  0plef  19027  0pledm  19028  itg1ge0  19041  mbfi1fseqlem5  19074  xrge0f  19086  itg2ge0  19090  itg2lea  19099  itg2splitlem  19103  itg2monolem1  19105  itg2mono  19108  itg2i1fseqle  19109  itg2i1fseq  19110  itg2addlem  19113  itg2cnlem1  19116
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pr 4214
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-rex 2549  df-reu 2550  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-sn 3646  df-pr 3647  df-op 3649  df-uni 3828  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-id 4309  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ofr 6079
  Copyright terms: Public domain W3C validator