MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ofrfval Unicode version

Theorem ofrfval 6272
Description: Value of a relation applied to two functions. (Contributed by Mario Carneiro, 28-Jul-2014.)
Hypotheses
Ref Expression
offval.1  |-  ( ph  ->  F  Fn  A )
offval.2  |-  ( ph  ->  G  Fn  B )
offval.3  |-  ( ph  ->  A  e.  V )
offval.4  |-  ( ph  ->  B  e.  W )
offval.5  |-  ( A  i^i  B )  =  S
offval.6  |-  ( (
ph  /\  x  e.  A )  ->  ( F `  x )  =  C )
offval.7  |-  ( (
ph  /\  x  e.  B )  ->  ( G `  x )  =  D )
Assertion
Ref Expression
ofrfval  |-  ( ph  ->  ( F  o R R G  <->  A. x  e.  S  C R D ) )
Distinct variable groups:    x, A    x, F    x, G    ph, x    x, S    x, R
Allowed substitution hints:    B( x)    C( x)    D( x)    V( x)    W( x)

Proof of Theorem ofrfval
Dummy variables  f 
g are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 offval.1 . . . 4  |-  ( ph  ->  F  Fn  A )
2 offval.3 . . . 4  |-  ( ph  ->  A  e.  V )
3 fnex 5920 . . . 4  |-  ( ( F  Fn  A  /\  A  e.  V )  ->  F  e.  _V )
41, 2, 3syl2anc 643 . . 3  |-  ( ph  ->  F  e.  _V )
5 offval.2 . . . 4  |-  ( ph  ->  G  Fn  B )
6 offval.4 . . . 4  |-  ( ph  ->  B  e.  W )
7 fnex 5920 . . . 4  |-  ( ( G  Fn  B  /\  B  e.  W )  ->  G  e.  _V )
85, 6, 7syl2anc 643 . . 3  |-  ( ph  ->  G  e.  _V )
9 dmeq 5029 . . . . . 6  |-  ( f  =  F  ->  dom  f  =  dom  F )
10 dmeq 5029 . . . . . 6  |-  ( g  =  G  ->  dom  g  =  dom  G )
119, 10ineqan12d 3504 . . . . 5  |-  ( ( f  =  F  /\  g  =  G )  ->  ( dom  f  i^i 
dom  g )  =  ( dom  F  i^i  dom 
G ) )
12 fveq1 5686 . . . . . 6  |-  ( f  =  F  ->  (
f `  x )  =  ( F `  x ) )
13 fveq1 5686 . . . . . 6  |-  ( g  =  G  ->  (
g `  x )  =  ( G `  x ) )
1412, 13breqan12d 4187 . . . . 5  |-  ( ( f  =  F  /\  g  =  G )  ->  ( ( f `  x ) R ( g `  x )  <-> 
( F `  x
) R ( G `
 x ) ) )
1511, 14raleqbidv 2876 . . . 4  |-  ( ( f  =  F  /\  g  =  G )  ->  ( A. x  e.  ( dom  f  i^i 
dom  g ) ( f `  x ) R ( g `  x )  <->  A. x  e.  ( dom  F  i^i  dom 
G ) ( F `
 x ) R ( G `  x
) ) )
16 df-ofr 6265 . . . 4  |-  o R R  =  { <. f ,  g >.  |  A. x  e.  ( dom  f  i^i  dom  g )
( f `  x
) R ( g `
 x ) }
1715, 16brabga 4429 . . 3  |-  ( ( F  e.  _V  /\  G  e.  _V )  ->  ( F  o R R G  <->  A. x  e.  ( dom  F  i^i  dom 
G ) ( F `
 x ) R ( G `  x
) ) )
184, 8, 17syl2anc 643 . 2  |-  ( ph  ->  ( F  o R R G  <->  A. x  e.  ( dom  F  i^i  dom 
G ) ( F `
 x ) R ( G `  x
) ) )
19 fndm 5503 . . . . . 6  |-  ( F  Fn  A  ->  dom  F  =  A )
201, 19syl 16 . . . . 5  |-  ( ph  ->  dom  F  =  A )
21 fndm 5503 . . . . . 6  |-  ( G  Fn  B  ->  dom  G  =  B )
225, 21syl 16 . . . . 5  |-  ( ph  ->  dom  G  =  B )
2320, 22ineq12d 3503 . . . 4  |-  ( ph  ->  ( dom  F  i^i  dom 
G )  =  ( A  i^i  B ) )
24 offval.5 . . . 4  |-  ( A  i^i  B )  =  S
2523, 24syl6eq 2452 . . 3  |-  ( ph  ->  ( dom  F  i^i  dom 
G )  =  S )
2625raleqdv 2870 . 2  |-  ( ph  ->  ( A. x  e.  ( dom  F  i^i  dom 
G ) ( F `
 x ) R ( G `  x
)  <->  A. x  e.  S  ( F `  x ) R ( G `  x ) ) )
27 inss1 3521 . . . . . . 7  |-  ( A  i^i  B )  C_  A
2824, 27eqsstr3i 3339 . . . . . 6  |-  S  C_  A
2928sseli 3304 . . . . 5  |-  ( x  e.  S  ->  x  e.  A )
30 offval.6 . . . . 5  |-  ( (
ph  /\  x  e.  A )  ->  ( F `  x )  =  C )
3129, 30sylan2 461 . . . 4  |-  ( (
ph  /\  x  e.  S )  ->  ( F `  x )  =  C )
32 inss2 3522 . . . . . . 7  |-  ( A  i^i  B )  C_  B
3324, 32eqsstr3i 3339 . . . . . 6  |-  S  C_  B
3433sseli 3304 . . . . 5  |-  ( x  e.  S  ->  x  e.  B )
35 offval.7 . . . . 5  |-  ( (
ph  /\  x  e.  B )  ->  ( G `  x )  =  D )
3634, 35sylan2 461 . . . 4  |-  ( (
ph  /\  x  e.  S )  ->  ( G `  x )  =  D )
3731, 36breq12d 4185 . . 3  |-  ( (
ph  /\  x  e.  S )  ->  (
( F `  x
) R ( G `
 x )  <->  C R D ) )
3837ralbidva 2682 . 2  |-  ( ph  ->  ( A. x  e.  S  ( F `  x ) R ( G `  x )  <->  A. x  e.  S  C R D ) )
3918, 26, 383bitrd 271 1  |-  ( ph  ->  ( F  o R R G  <->  A. x  e.  S  C R D ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359    = wceq 1649    e. wcel 1721   A.wral 2666   _Vcvv 2916    i^i cin 3279   class class class wbr 4172   dom cdm 4837    Fn wfn 5408   ` cfv 5413    o Rcofr 6263
This theorem is referenced by:  ofrval  6274  ofrfval2  6282  caofref  6289  caofrss  6296  caoftrn  6298  ofsubge0  9955  pwsle  13669  pwsleval  13670  psrbaglesupp  16388  psrbagcon  16391  psrbaglefi  16392  psrlidm  16422  0plef  19517  0pledm  19518  itg1ge0  19531  mbfi1fseqlem5  19564  xrge0f  19576  itg2ge0  19580  itg2lea  19589  itg2splitlem  19593  itg2monolem1  19595  itg2mono  19598  itg2i1fseqle  19599  itg2i1fseq  19600  itg2addlem  19603  itg2cnlem1  19606  itg2addnclem  26155
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2385  ax-rep 4280  ax-sep 4290  ax-nul 4298  ax-pr 4363
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2258  df-mo 2259  df-clab 2391  df-cleq 2397  df-clel 2400  df-nfc 2529  df-ne 2569  df-ral 2671  df-rex 2672  df-reu 2673  df-rab 2675  df-v 2918  df-sbc 3122  df-csb 3212  df-dif 3283  df-un 3285  df-in 3287  df-ss 3294  df-nul 3589  df-if 3700  df-sn 3780  df-pr 3781  df-op 3783  df-uni 3976  df-iun 4055  df-br 4173  df-opab 4227  df-mpt 4228  df-id 4458  df-xp 4843  df-rel 4844  df-cnv 4845  df-co 4846  df-dm 4847  df-rn 4848  df-res 4849  df-ima 4850  df-iota 5377  df-fun 5415  df-fn 5416  df-f 5417  df-f1 5418  df-fo 5419  df-f1o 5420  df-fv 5421  df-ofr 6265
  Copyright terms: Public domain W3C validator