MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oieq1 Structured version   Unicode version

Theorem oieq1 7481
Description: Equality theorem for ordinal isomorphism. (Contributed by Mario Carneiro, 23-May-2015.)
Assertion
Ref Expression
oieq1  |-  ( R  =  S  -> OrdIso ( R ,  A )  = OrdIso
( S ,  A
) )

Proof of Theorem oieq1
Dummy variables  h  j  t  u  v  w  x  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 weeq1 4570 . . . 4  |-  ( R  =  S  ->  ( R  We  A  <->  S  We  A ) )
2 seeq1 4554 . . . 4  |-  ( R  =  S  ->  ( R Se  A  <->  S Se  A )
)
31, 2anbi12d 692 . . 3  |-  ( R  =  S  ->  (
( R  We  A  /\  R Se  A )  <->  ( S  We  A  /\  S Se  A ) ) )
4 breq 4214 . . . . . . . . 9  |-  ( R  =  S  ->  (
j R w  <->  j S w ) )
54ralbidv 2725 . . . . . . . 8  |-  ( R  =  S  ->  ( A. j  e.  ran  h  j R w  <->  A. j  e.  ran  h  j S w ) )
65rabbidv 2948 . . . . . . 7  |-  ( R  =  S  ->  { w  e.  A  |  A. j  e.  ran  h  j R w }  =  { w  e.  A  |  A. j  e.  ran  h  j S w } )
7 breq 4214 . . . . . . . . 9  |-  ( R  =  S  ->  (
u R v  <->  u S
v ) )
87notbid 286 . . . . . . . 8  |-  ( R  =  S  ->  ( -.  u R v  <->  -.  u S v ) )
96, 8raleqbidv 2916 . . . . . . 7  |-  ( R  =  S  ->  ( A. u  e.  { w  e.  A  |  A. j  e.  ran  h  j R w }  -.  u R v  <->  A. u  e.  { w  e.  A  |  A. j  e.  ran  h  j S w }  -.  u S v ) )
106, 9riotaeqbidv 6552 . . . . . 6  |-  ( R  =  S  ->  ( iota_ v  e.  { w  e.  A  |  A. j  e.  ran  h  j R w } A. u  e.  { w  e.  A  |  A. j  e.  ran  h  j R w }  -.  u R v )  =  ( iota_ v  e.  {
w  e.  A  |  A. j  e.  ran  h  j S w } A. u  e. 
{ w  e.  A  |  A. j  e.  ran  h  j S w }  -.  u S v ) )
1110mpteq2dv 4296 . . . . 5  |-  ( R  =  S  ->  (
h  e.  _V  |->  (
iota_ v  e.  { w  e.  A  |  A. j  e.  ran  h  j R w } A. u  e.  { w  e.  A  |  A. j  e.  ran  h  j R w }  -.  u R v ) )  =  ( h  e. 
_V  |->  ( iota_ v  e. 
{ w  e.  A  |  A. j  e.  ran  h  j S w } A. u  e. 
{ w  e.  A  |  A. j  e.  ran  h  j S w }  -.  u S v ) ) )
12 recseq 6634 . . . . 5  |-  ( ( h  e.  _V  |->  (
iota_ v  e.  { w  e.  A  |  A. j  e.  ran  h  j R w } A. u  e.  { w  e.  A  |  A. j  e.  ran  h  j R w }  -.  u R v ) )  =  ( h  e. 
_V  |->  ( iota_ v  e. 
{ w  e.  A  |  A. j  e.  ran  h  j S w } A. u  e. 
{ w  e.  A  |  A. j  e.  ran  h  j S w }  -.  u S v ) )  -> recs ( ( h  e. 
_V  |->  ( iota_ v  e. 
{ w  e.  A  |  A. j  e.  ran  h  j R w } A. u  e. 
{ w  e.  A  |  A. j  e.  ran  h  j R w }  -.  u R v ) ) )  = recs ( ( h  e.  _V  |->  ( iota_ v  e.  { w  e.  A  |  A. j  e.  ran  h  j S w } A. u  e.  { w  e.  A  |  A. j  e.  ran  h  j S w }  -.  u S v ) ) ) )
1311, 12syl 16 . . . 4  |-  ( R  =  S  -> recs ( ( h  e.  _V  |->  (
iota_ v  e.  { w  e.  A  |  A. j  e.  ran  h  j R w } A. u  e.  { w  e.  A  |  A. j  e.  ran  h  j R w }  -.  u R v ) ) )  = recs ( ( h  e.  _V  |->  (
iota_ v  e.  { w  e.  A  |  A. j  e.  ran  h  j S w } A. u  e.  { w  e.  A  |  A. j  e.  ran  h  j S w }  -.  u S v ) ) ) )
1413imaeq1d 5202 . . . . . . 7  |-  ( R  =  S  ->  (recs ( ( h  e. 
_V  |->  ( iota_ v  e. 
{ w  e.  A  |  A. j  e.  ran  h  j R w } A. u  e. 
{ w  e.  A  |  A. j  e.  ran  h  j R w }  -.  u R v ) ) )
" x )  =  (recs ( ( h  e.  _V  |->  ( iota_ v  e.  { w  e.  A  |  A. j  e.  ran  h  j S w } A. u  e.  { w  e.  A  |  A. j  e.  ran  h  j S w }  -.  u S v ) ) )
" x ) )
15 breq 4214 . . . . . . 7  |-  ( R  =  S  ->  (
z R t  <->  z S
t ) )
1614, 15raleqbidv 2916 . . . . . 6  |-  ( R  =  S  ->  ( A. z  e.  (recs ( ( h  e. 
_V  |->  ( iota_ v  e. 
{ w  e.  A  |  A. j  e.  ran  h  j R w } A. u  e. 
{ w  e.  A  |  A. j  e.  ran  h  j R w }  -.  u R v ) ) )
" x ) z R t  <->  A. z  e.  (recs ( ( h  e.  _V  |->  ( iota_ v  e.  { w  e.  A  |  A. j  e.  ran  h  j S w } A. u  e.  { w  e.  A  |  A. j  e.  ran  h  j S w }  -.  u S v ) ) )
" x ) z S t ) )
1716rexbidv 2726 . . . . 5  |-  ( R  =  S  ->  ( E. t  e.  A  A. z  e.  (recs ( ( h  e. 
_V  |->  ( iota_ v  e. 
{ w  e.  A  |  A. j  e.  ran  h  j R w } A. u  e. 
{ w  e.  A  |  A. j  e.  ran  h  j R w }  -.  u R v ) ) )
" x ) z R t  <->  E. t  e.  A  A. z  e.  (recs ( ( h  e.  _V  |->  ( iota_ v  e.  { w  e.  A  |  A. j  e.  ran  h  j S w } A. u  e.  { w  e.  A  |  A. j  e.  ran  h  j S w }  -.  u S v ) ) )
" x ) z S t ) )
1817rabbidv 2948 . . . 4  |-  ( R  =  S  ->  { x  e.  On  |  E. t  e.  A  A. z  e.  (recs ( ( h  e.  _V  |->  ( iota_ v  e.  { w  e.  A  |  A. j  e.  ran  h  j R w } A. u  e.  { w  e.  A  |  A. j  e.  ran  h  j R w }  -.  u R v ) ) )
" x ) z R t }  =  { x  e.  On  |  E. t  e.  A  A. z  e.  (recs ( ( h  e. 
_V  |->  ( iota_ v  e. 
{ w  e.  A  |  A. j  e.  ran  h  j S w } A. u  e. 
{ w  e.  A  |  A. j  e.  ran  h  j S w }  -.  u S v ) ) )
" x ) z S t } )
1913, 18reseq12d 5147 . . 3  |-  ( R  =  S  ->  (recs ( ( h  e. 
_V  |->  ( iota_ v  e. 
{ w  e.  A  |  A. j  e.  ran  h  j R w } A. u  e. 
{ w  e.  A  |  A. j  e.  ran  h  j R w }  -.  u R v ) ) )  |`  { x  e.  On  |  E. t  e.  A  A. z  e.  (recs ( ( h  e. 
_V  |->  ( iota_ v  e. 
{ w  e.  A  |  A. j  e.  ran  h  j R w } A. u  e. 
{ w  e.  A  |  A. j  e.  ran  h  j R w }  -.  u R v ) ) )
" x ) z R t } )  =  (recs ( ( h  e.  _V  |->  (
iota_ v  e.  { w  e.  A  |  A. j  e.  ran  h  j S w } A. u  e.  { w  e.  A  |  A. j  e.  ran  h  j S w }  -.  u S v ) ) )  |`  { x  e.  On  |  E. t  e.  A  A. z  e.  (recs ( ( h  e.  _V  |->  ( iota_ v  e.  { w  e.  A  |  A. j  e.  ran  h  j S w } A. u  e.  { w  e.  A  |  A. j  e.  ran  h  j S w }  -.  u S v ) ) )
" x ) z S t } ) )
20 eqidd 2437 . . 3  |-  ( R  =  S  ->  (/)  =  (/) )
213, 19, 20ifbieq12d 3761 . 2  |-  ( R  =  S  ->  if ( ( R  We  A  /\  R Se  A ) ,  (recs ( ( h  e.  _V  |->  (
iota_ v  e.  { w  e.  A  |  A. j  e.  ran  h  j R w } A. u  e.  { w  e.  A  |  A. j  e.  ran  h  j R w }  -.  u R v ) ) )  |`  { x  e.  On  |  E. t  e.  A  A. z  e.  (recs ( ( h  e.  _V  |->  ( iota_ v  e.  { w  e.  A  |  A. j  e.  ran  h  j R w } A. u  e.  { w  e.  A  |  A. j  e.  ran  h  j R w }  -.  u R v ) ) )
" x ) z R t } ) ,  (/) )  =  if ( ( S  We  A  /\  S Se  A ) ,  (recs ( ( h  e.  _V  |->  (
iota_ v  e.  { w  e.  A  |  A. j  e.  ran  h  j S w } A. u  e.  { w  e.  A  |  A. j  e.  ran  h  j S w }  -.  u S v ) ) )  |`  { x  e.  On  |  E. t  e.  A  A. z  e.  (recs ( ( h  e.  _V  |->  ( iota_ v  e.  { w  e.  A  |  A. j  e.  ran  h  j S w } A. u  e.  { w  e.  A  |  A. j  e.  ran  h  j S w }  -.  u S v ) ) )
" x ) z S t } ) ,  (/) ) )
22 df-oi 7479 . 2  |- OrdIso ( R ,  A )  =  if ( ( R  We  A  /\  R Se  A ) ,  (recs ( ( h  e. 
_V  |->  ( iota_ v  e. 
{ w  e.  A  |  A. j  e.  ran  h  j R w } A. u  e. 
{ w  e.  A  |  A. j  e.  ran  h  j R w }  -.  u R v ) ) )  |`  { x  e.  On  |  E. t  e.  A  A. z  e.  (recs ( ( h  e. 
_V  |->  ( iota_ v  e. 
{ w  e.  A  |  A. j  e.  ran  h  j R w } A. u  e. 
{ w  e.  A  |  A. j  e.  ran  h  j R w }  -.  u R v ) ) )
" x ) z R t } ) ,  (/) )
23 df-oi 7479 . 2  |- OrdIso ( S ,  A )  =  if ( ( S  We  A  /\  S Se  A ) ,  (recs ( ( h  e. 
_V  |->  ( iota_ v  e. 
{ w  e.  A  |  A. j  e.  ran  h  j S w } A. u  e. 
{ w  e.  A  |  A. j  e.  ran  h  j S w }  -.  u S v ) ) )  |`  { x  e.  On  |  E. t  e.  A  A. z  e.  (recs ( ( h  e. 
_V  |->  ( iota_ v  e. 
{ w  e.  A  |  A. j  e.  ran  h  j S w } A. u  e. 
{ w  e.  A  |  A. j  e.  ran  h  j S w }  -.  u S v ) ) )
" x ) z S t } ) ,  (/) )
2421, 22, 233eqtr4g 2493 1  |-  ( R  =  S  -> OrdIso ( R ,  A )  = OrdIso
( S ,  A
) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 359    = wceq 1652   A.wral 2705   E.wrex 2706   {crab 2709   _Vcvv 2956   (/)c0 3628   ifcif 3739   class class class wbr 4212    e. cmpt 4266   Se wse 4539    We wwe 4540   Oncon0 4581   ran crn 4879    |` cres 4880   "cima 4881   iota_crio 6542  recscrecs 6632  OrdIsocoi 7478
This theorem is referenced by:  hartogslem1  7511
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2417  ax-sep 4330
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2285  df-clab 2423  df-cleq 2429  df-clel 2432  df-nfc 2561  df-ral 2710  df-rex 2711  df-reu 2712  df-rab 2714  df-v 2958  df-dif 3323  df-un 3325  df-in 3327  df-ss 3334  df-nul 3629  df-if 3740  df-sn 3820  df-pr 3821  df-op 3823  df-uni 4016  df-br 4213  df-opab 4267  df-mpt 4268  df-po 4503  df-so 4504  df-fr 4541  df-se 4542  df-we 4543  df-xp 4884  df-cnv 4886  df-dm 4888  df-rn 4889  df-res 4890  df-ima 4891  df-iota 5418  df-fv 5462  df-riota 6549  df-recs 6633  df-oi 7479
  Copyright terms: Public domain W3C validator