MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oieu Unicode version

Theorem oieu 7401
Description: Uniqueness of the unique ordinal isomorphism. (Contributed by Mario Carneiro, 23-May-2015.) (Revised by Mario Carneiro, 25-Jun-2015.)
Hypothesis
Ref Expression
oicl.1  |-  F  = OrdIso
( R ,  A
)
Assertion
Ref Expression
oieu  |-  ( ( R  We  A  /\  R Se  A )  ->  (
( Ord  B  /\  G  Isom  _E  ,  R  ( B ,  A ) )  <->  ( B  =  dom  F  /\  G  =  F ) ) )

Proof of Theorem oieu
StepHypRef Expression
1 simprr 733 . . . . . 6  |-  ( ( ( R  We  A  /\  R Se  A )  /\  ( Ord  B  /\  G  Isom  _E  ,  R  ( B ,  A ) ) )  ->  G  Isom  _E  ,  R  ( B ,  A ) )
2 oicl.1 . . . . . . . . 9  |-  F  = OrdIso
( R ,  A
)
32ordtype 7394 . . . . . . . 8  |-  ( ( R  We  A  /\  R Se  A )  ->  F  Isom  _E  ,  R  ( dom  F ,  A
) )
43adantr 451 . . . . . . 7  |-  ( ( ( R  We  A  /\  R Se  A )  /\  ( Ord  B  /\  G  Isom  _E  ,  R  ( B ,  A ) ) )  ->  F  Isom  _E  ,  R  ( dom  F ,  A
) )
5 isocnv 5950 . . . . . . 7  |-  ( F 
Isom  _E  ,  R  ( dom  F ,  A
)  ->  `' F  Isom  R ,  _E  ( A ,  dom  F ) )
64, 5syl 15 . . . . . 6  |-  ( ( ( R  We  A  /\  R Se  A )  /\  ( Ord  B  /\  G  Isom  _E  ,  R  ( B ,  A ) ) )  ->  `' F  Isom  R ,  _E  ( A ,  dom  F
) )
7 isotr 5956 . . . . . 6  |-  ( ( G  Isom  _E  ,  R  ( B ,  A )  /\  `' F  Isom  R ,  _E  ( A ,  dom  F ) )  ->  ( `' F  o.  G )  Isom  _E  ,  _E  ( B ,  dom  F ) )
81, 6, 7syl2anc 642 . . . . 5  |-  ( ( ( R  We  A  /\  R Se  A )  /\  ( Ord  B  /\  G  Isom  _E  ,  R  ( B ,  A ) ) )  ->  ( `' F  o.  G
)  Isom  _E  ,  _E  ( B ,  dom  F
) )
9 simprl 732 . . . . 5  |-  ( ( ( R  We  A  /\  R Se  A )  /\  ( Ord  B  /\  G  Isom  _E  ,  R  ( B ,  A ) ) )  ->  Ord  B )
102oicl 7391 . . . . . 6  |-  Ord  dom  F
1110a1i 10 . . . . 5  |-  ( ( ( R  We  A  /\  R Se  A )  /\  ( Ord  B  /\  G  Isom  _E  ,  R  ( B ,  A ) ) )  ->  Ord  dom 
F )
12 ordiso2 7377 . . . . 5  |-  ( ( ( `' F  o.  G )  Isom  _E  ,  _E  ( B ,  dom  F )  /\  Ord  B  /\  Ord  dom  F )  ->  B  =  dom  F
)
138, 9, 11, 12syl3anc 1183 . . . 4  |-  ( ( ( R  We  A  /\  R Se  A )  /\  ( Ord  B  /\  G  Isom  _E  ,  R  ( B ,  A ) ) )  ->  B  =  dom  F )
14 ordwe 4508 . . . . . 6  |-  ( Ord 
B  ->  _E  We  B )
1514ad2antrl 708 . . . . 5  |-  ( ( ( R  We  A  /\  R Se  A )  /\  ( Ord  B  /\  G  Isom  _E  ,  R  ( B ,  A ) ) )  ->  _E  We  B )
16 epse 4479 . . . . . 6  |-  _E Se  B
1716a1i 10 . . . . 5  |-  ( ( ( R  We  A  /\  R Se  A )  /\  ( Ord  B  /\  G  Isom  _E  ,  R  ( B ,  A ) ) )  ->  _E Se  B )
18 isoeq4 5942 . . . . . . 7  |-  ( B  =  dom  F  -> 
( F  Isom  _E  ,  R  ( B ,  A )  <->  F  Isom  _E  ,  R  ( dom 
F ,  A ) ) )
1913, 18syl 15 . . . . . 6  |-  ( ( ( R  We  A  /\  R Se  A )  /\  ( Ord  B  /\  G  Isom  _E  ,  R  ( B ,  A ) ) )  ->  ( F  Isom  _E  ,  R  ( B ,  A )  <-> 
F  Isom  _E  ,  R  ( dom  F ,  A
) ) )
204, 19mpbird 223 . . . . 5  |-  ( ( ( R  We  A  /\  R Se  A )  /\  ( Ord  B  /\  G  Isom  _E  ,  R  ( B ,  A ) ) )  ->  F  Isom  _E  ,  R  ( B ,  A ) )
21 weisoeq 5976 . . . . 5  |-  ( ( (  _E  We  B  /\  _E Se  B )  /\  ( G  Isom  _E  ,  R  ( B ,  A )  /\  F  Isom  _E  ,  R  ( B ,  A ) ) )  ->  G  =  F )
2215, 17, 1, 20, 21syl22anc 1184 . . . 4  |-  ( ( ( R  We  A  /\  R Se  A )  /\  ( Ord  B  /\  G  Isom  _E  ,  R  ( B ,  A ) ) )  ->  G  =  F )
2313, 22jca 518 . . 3  |-  ( ( ( R  We  A  /\  R Se  A )  /\  ( Ord  B  /\  G  Isom  _E  ,  R  ( B ,  A ) ) )  ->  ( B  =  dom  F  /\  G  =  F )
)
2423ex 423 . 2  |-  ( ( R  We  A  /\  R Se  A )  ->  (
( Ord  B  /\  G  Isom  _E  ,  R  ( B ,  A ) )  ->  ( B  =  dom  F  /\  G  =  F ) ) )
253, 10jctil 523 . . 3  |-  ( ( R  We  A  /\  R Se  A )  ->  ( Ord  dom  F  /\  F  Isom  _E  ,  R  ( dom  F ,  A
) ) )
26 ordeq 4502 . . . . 5  |-  ( B  =  dom  F  -> 
( Ord  B  <->  Ord  dom  F
) )
2726adantr 451 . . . 4  |-  ( ( B  =  dom  F  /\  G  =  F
)  ->  ( Ord  B  <->  Ord  dom  F ) )
28 isoeq4 5942 . . . . 5  |-  ( B  =  dom  F  -> 
( G  Isom  _E  ,  R  ( B ,  A )  <->  G  Isom  _E  ,  R  ( dom 
F ,  A ) ) )
29 isoeq1 5939 . . . . 5  |-  ( G  =  F  ->  ( G  Isom  _E  ,  R  ( dom  F ,  A
)  <->  F  Isom  _E  ,  R  ( dom  F ,  A ) ) )
3028, 29sylan9bb 680 . . . 4  |-  ( ( B  =  dom  F  /\  G  =  F
)  ->  ( G  Isom  _E  ,  R  ( B ,  A )  <-> 
F  Isom  _E  ,  R  ( dom  F ,  A
) ) )
3127, 30anbi12d 691 . . 3  |-  ( ( B  =  dom  F  /\  G  =  F
)  ->  ( ( Ord  B  /\  G  Isom  _E  ,  R  ( B ,  A ) )  <-> 
( Ord  dom  F  /\  F  Isom  _E  ,  R  ( dom  F ,  A
) ) ) )
3225, 31syl5ibrcom 213 . 2  |-  ( ( R  We  A  /\  R Se  A )  ->  (
( B  =  dom  F  /\  G  =  F )  ->  ( Ord  B  /\  G  Isom  _E  ,  R  ( B ,  A ) ) ) )
3324, 32impbid 183 1  |-  ( ( R  We  A  /\  R Se  A )  ->  (
( Ord  B  /\  G  Isom  _E  ,  R  ( B ,  A ) )  <->  ( B  =  dom  F  /\  G  =  F ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    = wceq 1647    _E cep 4406   Se wse 4453    We wwe 4454   Ord word 4494   `'ccnv 4791   dom cdm 4792    o. ccom 4796    Isom wiso 5359  OrdIsocoi 7371
This theorem is referenced by:  hartogslem1  7404  cantnfp1lem3  7529  oemapwe  7543  cantnffval2  7544  om2uzoi  11182
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1551  ax-5 1562  ax-17 1621  ax-9 1659  ax-8 1680  ax-13 1717  ax-14 1719  ax-6 1734  ax-7 1739  ax-11 1751  ax-12 1937  ax-ext 2347  ax-rep 4233  ax-sep 4243  ax-nul 4251  ax-pow 4290  ax-pr 4316  ax-un 4615
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 936  df-3an 937  df-tru 1324  df-ex 1547  df-nf 1550  df-sb 1654  df-eu 2221  df-mo 2222  df-clab 2353  df-cleq 2359  df-clel 2362  df-nfc 2491  df-ne 2531  df-ral 2633  df-rex 2634  df-reu 2635  df-rmo 2636  df-rab 2637  df-v 2875  df-sbc 3078  df-csb 3168  df-dif 3241  df-un 3243  df-in 3245  df-ss 3252  df-pss 3254  df-nul 3544  df-if 3655  df-pw 3716  df-sn 3735  df-pr 3736  df-tp 3737  df-op 3738  df-uni 3930  df-iun 4009  df-br 4126  df-opab 4180  df-mpt 4181  df-tr 4216  df-eprel 4408  df-id 4412  df-po 4417  df-so 4418  df-fr 4455  df-se 4456  df-we 4457  df-ord 4498  df-on 4499  df-lim 4500  df-suc 4501  df-xp 4798  df-rel 4799  df-cnv 4800  df-co 4801  df-dm 4802  df-rn 4803  df-res 4804  df-ima 4805  df-iota 5322  df-fun 5360  df-fn 5361  df-f 5362  df-f1 5363  df-fo 5364  df-f1o 5365  df-fv 5366  df-isom 5367  df-riota 6446  df-recs 6530  df-oi 7372
  Copyright terms: Public domain W3C validator