Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  oldmm1 Structured version   Unicode version

Theorem oldmm1 29916
Description: De Morgan's law for meet in an ortholattice. (chdmm1 23017 analog.) (Contributed by NM, 6-Nov-2011.)
Hypotheses
Ref Expression
oldmm1.b  |-  B  =  ( Base `  K
)
oldmm1.j  |-  .\/  =  ( join `  K )
oldmm1.m  |-  ./\  =  ( meet `  K )
oldmm1.o  |-  ._|_  =  ( oc `  K )
Assertion
Ref Expression
oldmm1  |-  ( ( K  e.  OL  /\  X  e.  B  /\  Y  e.  B )  ->  (  ._|_  `  ( X 
./\  Y ) )  =  ( (  ._|_  `  X )  .\/  (  ._|_  `  Y ) ) )

Proof of Theorem oldmm1
StepHypRef Expression
1 oldmm1.b . 2  |-  B  =  ( Base `  K
)
2 eqid 2435 . 2  |-  ( le
`  K )  =  ( le `  K
)
3 ollat 29912 . . 3  |-  ( K  e.  OL  ->  K  e.  Lat )
433ad2ant1 978 . 2  |-  ( ( K  e.  OL  /\  X  e.  B  /\  Y  e.  B )  ->  K  e.  Lat )
5 olop 29913 . . . 4  |-  ( K  e.  OL  ->  K  e.  OP )
653ad2ant1 978 . . 3  |-  ( ( K  e.  OL  /\  X  e.  B  /\  Y  e.  B )  ->  K  e.  OP )
7 oldmm1.m . . . . 5  |-  ./\  =  ( meet `  K )
81, 7latmcl 14470 . . . 4  |-  ( ( K  e.  Lat  /\  X  e.  B  /\  Y  e.  B )  ->  ( X  ./\  Y
)  e.  B )
93, 8syl3an1 1217 . . 3  |-  ( ( K  e.  OL  /\  X  e.  B  /\  Y  e.  B )  ->  ( X  ./\  Y
)  e.  B )
10 oldmm1.o . . . 4  |-  ._|_  =  ( oc `  K )
111, 10opoccl 29893 . . 3  |-  ( ( K  e.  OP  /\  ( X  ./\  Y )  e.  B )  -> 
(  ._|_  `  ( X  ./\ 
Y ) )  e.  B )
126, 9, 11syl2anc 643 . 2  |-  ( ( K  e.  OL  /\  X  e.  B  /\  Y  e.  B )  ->  (  ._|_  `  ( X 
./\  Y ) )  e.  B )
131, 10opoccl 29893 . . . . 5  |-  ( ( K  e.  OP  /\  X  e.  B )  ->  (  ._|_  `  X )  e.  B )
145, 13sylan 458 . . . 4  |-  ( ( K  e.  OL  /\  X  e.  B )  ->  (  ._|_  `  X )  e.  B )
15143adant3 977 . . 3  |-  ( ( K  e.  OL  /\  X  e.  B  /\  Y  e.  B )  ->  (  ._|_  `  X )  e.  B )
161, 10opoccl 29893 . . . . 5  |-  ( ( K  e.  OP  /\  Y  e.  B )  ->  (  ._|_  `  Y )  e.  B )
175, 16sylan 458 . . . 4  |-  ( ( K  e.  OL  /\  Y  e.  B )  ->  (  ._|_  `  Y )  e.  B )
18173adant2 976 . . 3  |-  ( ( K  e.  OL  /\  X  e.  B  /\  Y  e.  B )  ->  (  ._|_  `  Y )  e.  B )
19 oldmm1.j . . . 4  |-  .\/  =  ( join `  K )
201, 19latjcl 14469 . . 3  |-  ( ( K  e.  Lat  /\  (  ._|_  `  X )  e.  B  /\  (  ._|_  `  Y )  e.  B )  ->  (
(  ._|_  `  X )  .\/  (  ._|_  `  Y
) )  e.  B
)
214, 15, 18, 20syl3anc 1184 . 2  |-  ( ( K  e.  OL  /\  X  e.  B  /\  Y  e.  B )  ->  ( (  ._|_  `  X
)  .\/  (  ._|_  `  Y ) )  e.  B )
221, 2, 19latlej1 14479 . . . . . 6  |-  ( ( K  e.  Lat  /\  (  ._|_  `  X )  e.  B  /\  (  ._|_  `  Y )  e.  B )  ->  (  ._|_  `  X ) ( le `  K ) ( (  ._|_  `  X
)  .\/  (  ._|_  `  Y ) ) )
234, 15, 18, 22syl3anc 1184 . . . . 5  |-  ( ( K  e.  OL  /\  X  e.  B  /\  Y  e.  B )  ->  (  ._|_  `  X ) ( le `  K
) ( (  ._|_  `  X )  .\/  (  ._|_  `  Y ) ) )
24 simp2 958 . . . . . 6  |-  ( ( K  e.  OL  /\  X  e.  B  /\  Y  e.  B )  ->  X  e.  B )
251, 2, 10oplecon1b 29900 . . . . . 6  |-  ( ( K  e.  OP  /\  X  e.  B  /\  ( (  ._|_  `  X
)  .\/  (  ._|_  `  Y ) )  e.  B )  ->  (
(  ._|_  `  X )
( le `  K
) ( (  ._|_  `  X )  .\/  (  ._|_  `  Y ) )  <-> 
(  ._|_  `  ( (  ._|_  `  X )  .\/  (  ._|_  `  Y )
) ) ( le
`  K ) X ) )
266, 24, 21, 25syl3anc 1184 . . . . 5  |-  ( ( K  e.  OL  /\  X  e.  B  /\  Y  e.  B )  ->  ( (  ._|_  `  X
) ( le `  K ) ( ( 
._|_  `  X )  .\/  (  ._|_  `  Y )
)  <->  (  ._|_  `  (
(  ._|_  `  X )  .\/  (  ._|_  `  Y
) ) ) ( le `  K ) X ) )
2723, 26mpbid 202 . . . 4  |-  ( ( K  e.  OL  /\  X  e.  B  /\  Y  e.  B )  ->  (  ._|_  `  ( ( 
._|_  `  X )  .\/  (  ._|_  `  Y )
) ) ( le
`  K ) X )
281, 2, 19latlej2 14480 . . . . . 6  |-  ( ( K  e.  Lat  /\  (  ._|_  `  X )  e.  B  /\  (  ._|_  `  Y )  e.  B )  ->  (  ._|_  `  Y ) ( le `  K ) ( (  ._|_  `  X
)  .\/  (  ._|_  `  Y ) ) )
294, 15, 18, 28syl3anc 1184 . . . . 5  |-  ( ( K  e.  OL  /\  X  e.  B  /\  Y  e.  B )  ->  (  ._|_  `  Y ) ( le `  K
) ( (  ._|_  `  X )  .\/  (  ._|_  `  Y ) ) )
30 simp3 959 . . . . . 6  |-  ( ( K  e.  OL  /\  X  e.  B  /\  Y  e.  B )  ->  Y  e.  B )
311, 2, 10oplecon1b 29900 . . . . . 6  |-  ( ( K  e.  OP  /\  Y  e.  B  /\  ( (  ._|_  `  X
)  .\/  (  ._|_  `  Y ) )  e.  B )  ->  (
(  ._|_  `  Y )
( le `  K
) ( (  ._|_  `  X )  .\/  (  ._|_  `  Y ) )  <-> 
(  ._|_  `  ( (  ._|_  `  X )  .\/  (  ._|_  `  Y )
) ) ( le
`  K ) Y ) )
326, 30, 21, 31syl3anc 1184 . . . . 5  |-  ( ( K  e.  OL  /\  X  e.  B  /\  Y  e.  B )  ->  ( (  ._|_  `  Y
) ( le `  K ) ( ( 
._|_  `  X )  .\/  (  ._|_  `  Y )
)  <->  (  ._|_  `  (
(  ._|_  `  X )  .\/  (  ._|_  `  Y
) ) ) ( le `  K ) Y ) )
3329, 32mpbid 202 . . . 4  |-  ( ( K  e.  OL  /\  X  e.  B  /\  Y  e.  B )  ->  (  ._|_  `  ( ( 
._|_  `  X )  .\/  (  ._|_  `  Y )
) ) ( le
`  K ) Y )
341, 10opoccl 29893 . . . . . 6  |-  ( ( K  e.  OP  /\  ( (  ._|_  `  X
)  .\/  (  ._|_  `  Y ) )  e.  B )  ->  (  ._|_  `  ( (  ._|_  `  X )  .\/  (  ._|_  `  Y ) ) )  e.  B )
356, 21, 34syl2anc 643 . . . . 5  |-  ( ( K  e.  OL  /\  X  e.  B  /\  Y  e.  B )  ->  (  ._|_  `  ( ( 
._|_  `  X )  .\/  (  ._|_  `  Y )
) )  e.  B
)
361, 2, 7latlem12 14497 . . . . 5  |-  ( ( K  e.  Lat  /\  ( (  ._|_  `  (
(  ._|_  `  X )  .\/  (  ._|_  `  Y
) ) )  e.  B  /\  X  e.  B  /\  Y  e.  B ) )  -> 
( ( (  ._|_  `  ( (  ._|_  `  X
)  .\/  (  ._|_  `  Y ) ) ) ( le `  K
) X  /\  (  ._|_  `  ( (  ._|_  `  X )  .\/  (  ._|_  `  Y ) ) ) ( le `  K ) Y )  <-> 
(  ._|_  `  ( (  ._|_  `  X )  .\/  (  ._|_  `  Y )
) ) ( le
`  K ) ( X  ./\  Y )
) )
374, 35, 24, 30, 36syl13anc 1186 . . . 4  |-  ( ( K  e.  OL  /\  X  e.  B  /\  Y  e.  B )  ->  ( ( (  ._|_  `  ( (  ._|_  `  X
)  .\/  (  ._|_  `  Y ) ) ) ( le `  K
) X  /\  (  ._|_  `  ( (  ._|_  `  X )  .\/  (  ._|_  `  Y ) ) ) ( le `  K ) Y )  <-> 
(  ._|_  `  ( (  ._|_  `  X )  .\/  (  ._|_  `  Y )
) ) ( le
`  K ) ( X  ./\  Y )
) )
3827, 33, 37mpbi2and 888 . . 3  |-  ( ( K  e.  OL  /\  X  e.  B  /\  Y  e.  B )  ->  (  ._|_  `  ( ( 
._|_  `  X )  .\/  (  ._|_  `  Y )
) ) ( le
`  K ) ( X  ./\  Y )
)
391, 2, 10oplecon1b 29900 . . . 4  |-  ( ( K  e.  OP  /\  ( (  ._|_  `  X
)  .\/  (  ._|_  `  Y ) )  e.  B  /\  ( X 
./\  Y )  e.  B )  ->  (
(  ._|_  `  ( (  ._|_  `  X )  .\/  (  ._|_  `  Y )
) ) ( le
`  K ) ( X  ./\  Y )  <->  ( 
._|_  `  ( X  ./\  Y ) ) ( le
`  K ) ( (  ._|_  `  X ) 
.\/  (  ._|_  `  Y
) ) ) )
406, 21, 9, 39syl3anc 1184 . . 3  |-  ( ( K  e.  OL  /\  X  e.  B  /\  Y  e.  B )  ->  ( (  ._|_  `  (
(  ._|_  `  X )  .\/  (  ._|_  `  Y
) ) ) ( le `  K ) ( X  ./\  Y
)  <->  (  ._|_  `  ( X  ./\  Y ) ) ( le `  K
) ( (  ._|_  `  X )  .\/  (  ._|_  `  Y ) ) ) )
4138, 40mpbid 202 . 2  |-  ( ( K  e.  OL  /\  X  e.  B  /\  Y  e.  B )  ->  (  ._|_  `  ( X 
./\  Y ) ) ( le `  K
) ( (  ._|_  `  X )  .\/  (  ._|_  `  Y ) ) )
421, 2, 7latmle1 14495 . . . . 5  |-  ( ( K  e.  Lat  /\  X  e.  B  /\  Y  e.  B )  ->  ( X  ./\  Y
) ( le `  K ) X )
433, 42syl3an1 1217 . . . 4  |-  ( ( K  e.  OL  /\  X  e.  B  /\  Y  e.  B )  ->  ( X  ./\  Y
) ( le `  K ) X )
441, 2, 10oplecon3b 29899 . . . . 5  |-  ( ( K  e.  OP  /\  ( X  ./\  Y )  e.  B  /\  X  e.  B )  ->  (
( X  ./\  Y
) ( le `  K ) X  <->  (  ._|_  `  X ) ( le
`  K ) ( 
._|_  `  ( X  ./\  Y ) ) ) )
456, 9, 24, 44syl3anc 1184 . . . 4  |-  ( ( K  e.  OL  /\  X  e.  B  /\  Y  e.  B )  ->  ( ( X  ./\  Y ) ( le `  K ) X  <->  (  ._|_  `  X ) ( le
`  K ) ( 
._|_  `  ( X  ./\  Y ) ) ) )
4643, 45mpbid 202 . . 3  |-  ( ( K  e.  OL  /\  X  e.  B  /\  Y  e.  B )  ->  (  ._|_  `  X ) ( le `  K
) (  ._|_  `  ( X  ./\  Y ) ) )
471, 2, 7latmle2 14496 . . . . 5  |-  ( ( K  e.  Lat  /\  X  e.  B  /\  Y  e.  B )  ->  ( X  ./\  Y
) ( le `  K ) Y )
483, 47syl3an1 1217 . . . 4  |-  ( ( K  e.  OL  /\  X  e.  B  /\  Y  e.  B )  ->  ( X  ./\  Y
) ( le `  K ) Y )
491, 2, 10oplecon3b 29899 . . . . 5  |-  ( ( K  e.  OP  /\  ( X  ./\  Y )  e.  B  /\  Y  e.  B )  ->  (
( X  ./\  Y
) ( le `  K ) Y  <->  (  ._|_  `  Y ) ( le
`  K ) ( 
._|_  `  ( X  ./\  Y ) ) ) )
506, 9, 30, 49syl3anc 1184 . . . 4  |-  ( ( K  e.  OL  /\  X  e.  B  /\  Y  e.  B )  ->  ( ( X  ./\  Y ) ( le `  K ) Y  <->  (  ._|_  `  Y ) ( le
`  K ) ( 
._|_  `  ( X  ./\  Y ) ) ) )
5148, 50mpbid 202 . . 3  |-  ( ( K  e.  OL  /\  X  e.  B  /\  Y  e.  B )  ->  (  ._|_  `  Y ) ( le `  K
) (  ._|_  `  ( X  ./\  Y ) ) )
521, 2, 19latjle12 14481 . . . 4  |-  ( ( K  e.  Lat  /\  ( (  ._|_  `  X
)  e.  B  /\  (  ._|_  `  Y )  e.  B  /\  (  ._|_  `  ( X  ./\  Y ) )  e.  B
) )  ->  (
( (  ._|_  `  X
) ( le `  K ) (  ._|_  `  ( X  ./\  Y
) )  /\  (  ._|_  `  Y ) ( le `  K ) (  ._|_  `  ( X 
./\  Y ) ) )  <->  ( (  ._|_  `  X )  .\/  (  ._|_  `  Y ) ) ( le `  K
) (  ._|_  `  ( X  ./\  Y ) ) ) )
534, 15, 18, 12, 52syl13anc 1186 . . 3  |-  ( ( K  e.  OL  /\  X  e.  B  /\  Y  e.  B )  ->  ( ( (  ._|_  `  X ) ( le
`  K ) ( 
._|_  `  ( X  ./\  Y ) )  /\  (  ._|_  `  Y ) ( le `  K ) (  ._|_  `  ( X 
./\  Y ) ) )  <->  ( (  ._|_  `  X )  .\/  (  ._|_  `  Y ) ) ( le `  K
) (  ._|_  `  ( X  ./\  Y ) ) ) )
5446, 51, 53mpbi2and 888 . 2  |-  ( ( K  e.  OL  /\  X  e.  B  /\  Y  e.  B )  ->  ( (  ._|_  `  X
)  .\/  (  ._|_  `  Y ) ) ( le `  K ) (  ._|_  `  ( X 
./\  Y ) ) )
551, 2, 4, 12, 21, 41, 54latasymd 14476 1  |-  ( ( K  e.  OL  /\  X  e.  B  /\  Y  e.  B )  ->  (  ._|_  `  ( X 
./\  Y ) )  =  ( (  ._|_  `  X )  .\/  (  ._|_  `  Y ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359    /\ w3a 936    = wceq 1652    e. wcel 1725   class class class wbr 4204   ` cfv 5446  (class class class)co 6073   Basecbs 13459   lecple 13526   occoc 13527   joincjn 14391   meetcmee 14392   Latclat 14464   OPcops 29871   OLcol 29873
This theorem is referenced by:  oldmm2  29917  oldmm3N  29918  cmtcomlemN  29947  cmtbr2N  29952  omlfh1N  29957  cvrexch  30118  lhpmod2i2  30736  lhpmod6i1  30737  doca2N  31825  djajN  31836
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-rep 4312  ax-sep 4322  ax-nul 4330  ax-pow 4369  ax-pr 4395  ax-un 4693
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-nel 2601  df-ral 2702  df-rex 2703  df-reu 2704  df-rab 2706  df-v 2950  df-sbc 3154  df-csb 3244  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-nul 3621  df-if 3732  df-pw 3793  df-sn 3812  df-pr 3813  df-op 3815  df-uni 4008  df-iun 4087  df-br 4205  df-opab 4259  df-mpt 4260  df-id 4490  df-xp 4876  df-rel 4877  df-cnv 4878  df-co 4879  df-dm 4880  df-rn 4881  df-res 4882  df-ima 4883  df-iota 5410  df-fun 5448  df-fn 5449  df-f 5450  df-f1 5451  df-fo 5452  df-f1o 5453  df-fv 5454  df-ov 6076  df-oprab 6077  df-mpt2 6078  df-1st 6341  df-2nd 6342  df-undef 6535  df-riota 6541  df-poset 14393  df-lub 14421  df-glb 14422  df-join 14423  df-meet 14424  df-lat 14465  df-oposet 29875  df-ol 29877
  Copyright terms: Public domain W3C validator