Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  olm01 Unicode version

Theorem olm01 29426
Description: Meet with lattice zero is zero. (chm0 22070 analog.) (Contributed by NM, 8-Nov-2011.)
Hypotheses
Ref Expression
olm0.b  |-  B  =  ( Base `  K
)
olm0.m  |-  ./\  =  ( meet `  K )
olm0.z  |-  .0.  =  ( 0. `  K )
Assertion
Ref Expression
olm01  |-  ( ( K  e.  OL  /\  X  e.  B )  ->  ( X  ./\  .0.  )  =  .0.  )

Proof of Theorem olm01
StepHypRef Expression
1 olm0.b . 2  |-  B  =  ( Base `  K
)
2 eqid 2283 . 2  |-  ( le
`  K )  =  ( le `  K
)
3 ollat 29403 . . 3  |-  ( K  e.  OL  ->  K  e.  Lat )
43adantr 451 . 2  |-  ( ( K  e.  OL  /\  X  e.  B )  ->  K  e.  Lat )
5 simpr 447 . . 3  |-  ( ( K  e.  OL  /\  X  e.  B )  ->  X  e.  B )
6 olop 29404 . . . . 5  |-  ( K  e.  OL  ->  K  e.  OP )
76adantr 451 . . . 4  |-  ( ( K  e.  OL  /\  X  e.  B )  ->  K  e.  OP )
8 olm0.z . . . . 5  |-  .0.  =  ( 0. `  K )
91, 8op0cl 29374 . . . 4  |-  ( K  e.  OP  ->  .0.  e.  B )
107, 9syl 15 . . 3  |-  ( ( K  e.  OL  /\  X  e.  B )  ->  .0.  e.  B )
11 olm0.m . . . 4  |-  ./\  =  ( meet `  K )
121, 11latmcl 14157 . . 3  |-  ( ( K  e.  Lat  /\  X  e.  B  /\  .0.  e.  B )  -> 
( X  ./\  .0.  )  e.  B )
134, 5, 10, 12syl3anc 1182 . 2  |-  ( ( K  e.  OL  /\  X  e.  B )  ->  ( X  ./\  .0.  )  e.  B )
141, 2, 11latmle2 14183 . . 3  |-  ( ( K  e.  Lat  /\  X  e.  B  /\  .0.  e.  B )  -> 
( X  ./\  .0.  ) ( le `  K )  .0.  )
154, 5, 10, 14syl3anc 1182 . 2  |-  ( ( K  e.  OL  /\  X  e.  B )  ->  ( X  ./\  .0.  ) ( le `  K )  .0.  )
161, 2, 8op0le 29376 . . . 4  |-  ( ( K  e.  OP  /\  X  e.  B )  ->  .0.  ( le `  K ) X )
176, 16sylan 457 . . 3  |-  ( ( K  e.  OL  /\  X  e.  B )  ->  .0.  ( le `  K ) X )
181, 2latref 14159 . . . 4  |-  ( ( K  e.  Lat  /\  .0.  e.  B )  ->  .0.  ( le `  K
)  .0.  )
194, 10, 18syl2anc 642 . . 3  |-  ( ( K  e.  OL  /\  X  e.  B )  ->  .0.  ( le `  K )  .0.  )
201, 2, 11latlem12 14184 . . . 4  |-  ( ( K  e.  Lat  /\  (  .0.  e.  B  /\  X  e.  B  /\  .0.  e.  B ) )  ->  ( (  .0.  ( le `  K
) X  /\  .0.  ( le `  K )  .0.  )  <->  .0.  ( le `  K ) ( X  ./\  .0.  )
) )
214, 10, 5, 10, 20syl13anc 1184 . . 3  |-  ( ( K  e.  OL  /\  X  e.  B )  ->  ( (  .0.  ( le `  K ) X  /\  .0.  ( le
`  K )  .0.  )  <->  .0.  ( le `  K ) ( X 
./\  .0.  ) )
)
2217, 19, 21mpbi2and 887 . 2  |-  ( ( K  e.  OL  /\  X  e.  B )  ->  .0.  ( le `  K ) ( X 
./\  .0.  ) )
231, 2, 4, 13, 10, 15, 22latasymd 14163 1  |-  ( ( K  e.  OL  /\  X  e.  B )  ->  ( X  ./\  .0.  )  =  .0.  )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    = wceq 1623    e. wcel 1684   class class class wbr 4023   ` cfv 5255  (class class class)co 5858   Basecbs 13148   lecple 13215   meetcmee 14079   0.cp0 14143   Latclat 14151   OPcops 29362   OLcol 29364
This theorem is referenced by:  olm02  29427  omlfh1N  29448
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-reu 2550  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-op 3649  df-uni 3828  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-id 4309  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-1st 6122  df-2nd 6123  df-undef 6298  df-riota 6304  df-poset 14080  df-glb 14109  df-meet 14111  df-p0 14145  df-lat 14152  df-oposet 29366  df-ol 29368
  Copyright terms: Public domain W3C validator