MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  om00 Unicode version

Theorem om00 6573
Description: The product of two ordinal numbers is zero iff at least one of them is zero. Proposition 8.22 of [TakeutiZaring] p. 64. (Contributed by NM, 21-Dec-2004.)
Assertion
Ref Expression
om00  |-  ( ( A  e.  On  /\  B  e.  On )  ->  ( ( A  .o  B )  =  (/)  <->  ( A  =  (/)  \/  B  =  (/) ) ) )

Proof of Theorem om00
StepHypRef Expression
1 neanior 2531 . . . . 5  |-  ( ( A  =/=  (/)  /\  B  =/=  (/) )  <->  -.  ( A  =  (/)  \/  B  =  (/) ) )
2 eloni 4402 . . . . . . . . . 10  |-  ( A  e.  On  ->  Ord  A )
3 ordge1n0 6497 . . . . . . . . . 10  |-  ( Ord 
A  ->  ( 1o  C_  A  <->  A  =/=  (/) ) )
42, 3syl 15 . . . . . . . . 9  |-  ( A  e.  On  ->  ( 1o  C_  A  <->  A  =/=  (/) ) )
54biimprd 214 . . . . . . . 8  |-  ( A  e.  On  ->  ( A  =/=  (/)  ->  1o  C_  A
) )
65adantr 451 . . . . . . 7  |-  ( ( A  e.  On  /\  B  e.  On )  ->  ( A  =/=  (/)  ->  1o  C_  A ) )
7 on0eln0 4447 . . . . . . . . 9  |-  ( B  e.  On  ->  ( (/) 
e.  B  <->  B  =/=  (/) ) )
87adantl 452 . . . . . . . 8  |-  ( ( A  e.  On  /\  B  e.  On )  ->  ( (/)  e.  B  <->  B  =/=  (/) ) )
9 omword1 6571 . . . . . . . . 9  |-  ( ( ( A  e.  On  /\  B  e.  On )  /\  (/)  e.  B )  ->  A  C_  ( A  .o  B ) )
109ex 423 . . . . . . . 8  |-  ( ( A  e.  On  /\  B  e.  On )  ->  ( (/)  e.  B  ->  A  C_  ( A  .o  B ) ) )
118, 10sylbird 226 . . . . . . 7  |-  ( ( A  e.  On  /\  B  e.  On )  ->  ( B  =/=  (/)  ->  A  C_  ( A  .o  B
) ) )
126, 11anim12d 546 . . . . . 6  |-  ( ( A  e.  On  /\  B  e.  On )  ->  ( ( A  =/=  (/)  /\  B  =/=  (/) )  -> 
( 1o  C_  A  /\  A  C_  ( A  .o  B ) ) ) )
13 sstr 3187 . . . . . 6  |-  ( ( 1o  C_  A  /\  A  C_  ( A  .o  B ) )  ->  1o  C_  ( A  .o  B ) )
1412, 13syl6 29 . . . . 5  |-  ( ( A  e.  On  /\  B  e.  On )  ->  ( ( A  =/=  (/)  /\  B  =/=  (/) )  ->  1o  C_  ( A  .o  B ) ) )
151, 14syl5bir 209 . . . 4  |-  ( ( A  e.  On  /\  B  e.  On )  ->  ( -.  ( A  =  (/)  \/  B  =  (/) )  ->  1o  C_  ( A  .o  B
) ) )
16 omcl 6535 . . . . 5  |-  ( ( A  e.  On  /\  B  e.  On )  ->  ( A  .o  B
)  e.  On )
17 eloni 4402 . . . . 5  |-  ( ( A  .o  B )  e.  On  ->  Ord  ( A  .o  B
) )
18 ordge1n0 6497 . . . . 5  |-  ( Ord  ( A  .o  B
)  ->  ( 1o  C_  ( A  .o  B
)  <->  ( A  .o  B )  =/=  (/) ) )
1916, 17, 183syl 18 . . . 4  |-  ( ( A  e.  On  /\  B  e.  On )  ->  ( 1o  C_  ( A  .o  B )  <->  ( A  .o  B )  =/=  (/) ) )
2015, 19sylibd 205 . . 3  |-  ( ( A  e.  On  /\  B  e.  On )  ->  ( -.  ( A  =  (/)  \/  B  =  (/) )  ->  ( A  .o  B )  =/=  (/) ) )
2120necon4bd 2508 . 2  |-  ( ( A  e.  On  /\  B  e.  On )  ->  ( ( A  .o  B )  =  (/)  ->  ( A  =  (/)  \/  B  =  (/) ) ) )
22 oveq1 5865 . . . . . 6  |-  ( A  =  (/)  ->  ( A  .o  B )  =  ( (/)  .o  B
) )
23 om0r 6538 . . . . . 6  |-  ( B  e.  On  ->  ( (/) 
.o  B )  =  (/) )
2422, 23sylan9eqr 2337 . . . . 5  |-  ( ( B  e.  On  /\  A  =  (/) )  -> 
( A  .o  B
)  =  (/) )
2524ex 423 . . . 4  |-  ( B  e.  On  ->  ( A  =  (/)  ->  ( A  .o  B )  =  (/) ) )
2625adantl 452 . . 3  |-  ( ( A  e.  On  /\  B  e.  On )  ->  ( A  =  (/)  ->  ( A  .o  B
)  =  (/) ) )
27 oveq2 5866 . . . . . 6  |-  ( B  =  (/)  ->  ( A  .o  B )  =  ( A  .o  (/) ) )
28 om0 6516 . . . . . 6  |-  ( A  e.  On  ->  ( A  .o  (/) )  =  (/) )
2927, 28sylan9eqr 2337 . . . . 5  |-  ( ( A  e.  On  /\  B  =  (/) )  -> 
( A  .o  B
)  =  (/) )
3029ex 423 . . . 4  |-  ( A  e.  On  ->  ( B  =  (/)  ->  ( A  .o  B )  =  (/) ) )
3130adantr 451 . . 3  |-  ( ( A  e.  On  /\  B  e.  On )  ->  ( B  =  (/)  ->  ( A  .o  B
)  =  (/) ) )
3226, 31jaod 369 . 2  |-  ( ( A  e.  On  /\  B  e.  On )  ->  ( ( A  =  (/)  \/  B  =  (/) )  ->  ( A  .o  B )  =  (/) ) )
3321, 32impbid 183 1  |-  ( ( A  e.  On  /\  B  e.  On )  ->  ( ( A  .o  B )  =  (/)  <->  ( A  =  (/)  \/  B  =  (/) ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 176    \/ wo 357    /\ wa 358    = wceq 1623    e. wcel 1684    =/= wne 2446    C_ wss 3152   (/)c0 3455   Ord word 4391   Oncon0 4392  (class class class)co 5858   1oc1o 6472    .o comu 6477
This theorem is referenced by:  om00el  6574  omlimcl  6576  oeoe  6597
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-rex 2549  df-reu 2550  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-1st 6122  df-2nd 6123  df-recs 6388  df-rdg 6423  df-1o 6479  df-oadd 6483  df-omul 6484
  Copyright terms: Public domain W3C validator