MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  om1 Unicode version

Theorem om1 6714
Description: Ordinal multiplication with 1. Proposition 8.18(2) of [TakeutiZaring] p. 63. (Contributed by NM, 29-Oct-1995.)
Assertion
Ref Expression
om1  |-  ( A  e.  On  ->  ( A  .o  1o )  =  A )

Proof of Theorem om1
StepHypRef Expression
1 df-1o 6653 . . . 4  |-  1o  =  suc  (/)
21oveq2i 6024 . . 3  |-  ( A  .o  1o )  =  ( A  .o  suc  (/) )
3 peano1 4797 . . . 4  |-  (/)  e.  om
4 onmsuc 6702 . . . 4  |-  ( ( A  e.  On  /\  (/) 
e.  om )  ->  ( A  .o  suc  (/) )  =  ( ( A  .o  (/) )  +o  A ) )
53, 4mpan2 653 . . 3  |-  ( A  e.  On  ->  ( A  .o  suc  (/) )  =  ( ( A  .o  (/) )  +o  A ) )
62, 5syl5eq 2424 . 2  |-  ( A  e.  On  ->  ( A  .o  1o )  =  ( ( A  .o  (/) )  +o  A ) )
7 om0 6690 . . 3  |-  ( A  e.  On  ->  ( A  .o  (/) )  =  (/) )
87oveq1d 6028 . 2  |-  ( A  e.  On  ->  (
( A  .o  (/) )  +o  A )  =  (
(/)  +o  A )
)
9 oa0r 6711 . 2  |-  ( A  e.  On  ->  ( (/) 
+o  A )  =  A )
106, 8, 93eqtrd 2416 1  |-  ( A  e.  On  ->  ( A  .o  1o )  =  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1649    e. wcel 1717   (/)c0 3564   Oncon0 4515   suc csuc 4517   omcom 4778  (class class class)co 6013   1oc1o 6646    +o coa 6650    .o comu 6651
This theorem is referenced by:  oe1m  6717  omword1  6745  oeordi  6759  oeoalem  6768  oeoa  6769  oeeui  6774  oaabs2  6817  infxpenc  7825
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-13 1719  ax-14 1721  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2361  ax-rep 4254  ax-sep 4264  ax-nul 4272  ax-pow 4311  ax-pr 4337  ax-un 4634
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2235  df-mo 2236  df-clab 2367  df-cleq 2373  df-clel 2376  df-nfc 2505  df-ne 2545  df-ral 2647  df-rex 2648  df-reu 2649  df-rab 2651  df-v 2894  df-sbc 3098  df-csb 3188  df-dif 3259  df-un 3261  df-in 3263  df-ss 3270  df-pss 3272  df-nul 3565  df-if 3676  df-pw 3737  df-sn 3756  df-pr 3757  df-tp 3758  df-op 3759  df-uni 3951  df-iun 4030  df-br 4147  df-opab 4201  df-mpt 4202  df-tr 4237  df-eprel 4428  df-id 4432  df-po 4437  df-so 4438  df-fr 4475  df-we 4477  df-ord 4518  df-on 4519  df-lim 4520  df-suc 4521  df-om 4779  df-xp 4817  df-rel 4818  df-cnv 4819  df-co 4820  df-dm 4821  df-rn 4822  df-res 4823  df-ima 4824  df-iota 5351  df-fun 5389  df-fn 5390  df-f 5391  df-f1 5392  df-fo 5393  df-f1o 5394  df-fv 5395  df-ov 6016  df-oprab 6017  df-mpt2 6018  df-recs 6562  df-rdg 6597  df-1o 6653  df-oadd 6657  df-omul 6658
  Copyright terms: Public domain W3C validator