MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  om2uzlti Structured version   Unicode version

Theorem om2uzlti 11282
Description: Less-than relation for  G (see om2uz0i 11279). (Contributed by NM, 3-Oct-2004.) (Revised by Mario Carneiro, 13-Sep-2013.)
Hypotheses
Ref Expression
om2uz.1  |-  C  e.  ZZ
om2uz.2  |-  G  =  ( rec ( ( x  e.  _V  |->  ( x  +  1 ) ) ,  C )  |`  om )
Assertion
Ref Expression
om2uzlti  |-  ( ( A  e.  om  /\  B  e.  om )  ->  ( A  e.  B  ->  ( G `  A
)  <  ( G `  B ) ) )
Distinct variable group:    x, C
Allowed substitution hints:    A( x)    B( x)    G( x)

Proof of Theorem om2uzlti
Dummy variables  y 
z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eleq2 2496 . . . . 5  |-  ( z  =  (/)  ->  ( A  e.  z  <->  A  e.  (/) ) )
2 fveq2 5720 . . . . . 6  |-  ( z  =  (/)  ->  ( G `
 z )  =  ( G `  (/) ) )
32breq2d 4216 . . . . 5  |-  ( z  =  (/)  ->  ( ( G `  A )  <  ( G `  z )  <->  ( G `  A )  <  ( G `  (/) ) ) )
41, 3imbi12d 312 . . . 4  |-  ( z  =  (/)  ->  ( ( A  e.  z  -> 
( G `  A
)  <  ( G `  z ) )  <->  ( A  e.  (/)  ->  ( G `  A )  <  ( G `  (/) ) ) ) )
54imbi2d 308 . . 3  |-  ( z  =  (/)  ->  ( ( A  e.  om  ->  ( A  e.  z  -> 
( G `  A
)  <  ( G `  z ) ) )  <-> 
( A  e.  om  ->  ( A  e.  (/)  ->  ( G `  A
)  <  ( G `  (/) ) ) ) ) )
6 eleq2 2496 . . . . 5  |-  ( z  =  y  ->  ( A  e.  z  <->  A  e.  y ) )
7 fveq2 5720 . . . . . 6  |-  ( z  =  y  ->  ( G `  z )  =  ( G `  y ) )
87breq2d 4216 . . . . 5  |-  ( z  =  y  ->  (
( G `  A
)  <  ( G `  z )  <->  ( G `  A )  <  ( G `  y )
) )
96, 8imbi12d 312 . . . 4  |-  ( z  =  y  ->  (
( A  e.  z  ->  ( G `  A )  <  ( G `  z )
)  <->  ( A  e.  y  ->  ( G `  A )  <  ( G `  y )
) ) )
109imbi2d 308 . . 3  |-  ( z  =  y  ->  (
( A  e.  om  ->  ( A  e.  z  ->  ( G `  A )  <  ( G `  z )
) )  <->  ( A  e.  om  ->  ( A  e.  y  ->  ( G `
 A )  < 
( G `  y
) ) ) ) )
11 eleq2 2496 . . . . 5  |-  ( z  =  suc  y  -> 
( A  e.  z  <-> 
A  e.  suc  y
) )
12 fveq2 5720 . . . . . 6  |-  ( z  =  suc  y  -> 
( G `  z
)  =  ( G `
 suc  y )
)
1312breq2d 4216 . . . . 5  |-  ( z  =  suc  y  -> 
( ( G `  A )  <  ( G `  z )  <->  ( G `  A )  <  ( G `  suc  y ) ) )
1411, 13imbi12d 312 . . . 4  |-  ( z  =  suc  y  -> 
( ( A  e.  z  ->  ( G `  A )  <  ( G `  z )
)  <->  ( A  e. 
suc  y  ->  ( G `  A )  <  ( G `  suc  y ) ) ) )
1514imbi2d 308 . . 3  |-  ( z  =  suc  y  -> 
( ( A  e. 
om  ->  ( A  e.  z  ->  ( G `  A )  <  ( G `  z )
) )  <->  ( A  e.  om  ->  ( A  e.  suc  y  ->  ( G `  A )  <  ( G `  suc  y ) ) ) ) )
16 eleq2 2496 . . . . 5  |-  ( z  =  B  ->  ( A  e.  z  <->  A  e.  B ) )
17 fveq2 5720 . . . . . 6  |-  ( z  =  B  ->  ( G `  z )  =  ( G `  B ) )
1817breq2d 4216 . . . . 5  |-  ( z  =  B  ->  (
( G `  A
)  <  ( G `  z )  <->  ( G `  A )  <  ( G `  B )
) )
1916, 18imbi12d 312 . . . 4  |-  ( z  =  B  ->  (
( A  e.  z  ->  ( G `  A )  <  ( G `  z )
)  <->  ( A  e.  B  ->  ( G `  A )  <  ( G `  B )
) ) )
2019imbi2d 308 . . 3  |-  ( z  =  B  ->  (
( A  e.  om  ->  ( A  e.  z  ->  ( G `  A )  <  ( G `  z )
) )  <->  ( A  e.  om  ->  ( A  e.  B  ->  ( G `
 A )  < 
( G `  B
) ) ) ) )
21 noel 3624 . . . . 5  |-  -.  A  e.  (/)
2221pm2.21i 125 . . . 4  |-  ( A  e.  (/)  ->  ( G `  A )  <  ( G `  (/) ) )
2322a1i 11 . . 3  |-  ( A  e.  om  ->  ( A  e.  (/)  ->  ( G `  A )  <  ( G `  (/) ) ) )
24 id 20 . . . . . . 7  |-  ( ( A  e.  y  -> 
( G `  A
)  <  ( G `  y ) )  -> 
( A  e.  y  ->  ( G `  A )  <  ( G `  y )
) )
25 fveq2 5720 . . . . . . . 8  |-  ( A  =  y  ->  ( G `  A )  =  ( G `  y ) )
2625a1i 11 . . . . . . 7  |-  ( ( A  e.  y  -> 
( G `  A
)  <  ( G `  y ) )  -> 
( A  =  y  ->  ( G `  A )  =  ( G `  y ) ) )
2724, 26orim12d 812 . . . . . 6  |-  ( ( A  e.  y  -> 
( G `  A
)  <  ( G `  y ) )  -> 
( ( A  e.  y  \/  A  =  y )  ->  (
( G `  A
)  <  ( G `  y )  \/  ( G `  A )  =  ( G `  y ) ) ) )
28 elsuc2g 4641 . . . . . . . . 9  |-  ( y  e.  om  ->  ( A  e.  suc  y  <->  ( A  e.  y  \/  A  =  y ) ) )
2928bicomd 193 . . . . . . . 8  |-  ( y  e.  om  ->  (
( A  e.  y  \/  A  =  y )  <->  A  e.  suc  y ) )
3029adantl 453 . . . . . . 7  |-  ( ( A  e.  om  /\  y  e.  om )  ->  ( ( A  e.  y  \/  A  =  y )  <->  A  e.  suc  y ) )
31 om2uz.1 . . . . . . . . . . 11  |-  C  e.  ZZ
32 om2uz.2 . . . . . . . . . . 11  |-  G  =  ( rec ( ( x  e.  _V  |->  ( x  +  1 ) ) ,  C )  |`  om )
3331, 32om2uzsuci 11280 . . . . . . . . . 10  |-  ( y  e.  om  ->  ( G `  suc  y )  =  ( ( G `
 y )  +  1 ) )
3433breq2d 4216 . . . . . . . . 9  |-  ( y  e.  om  ->  (
( G `  A
)  <  ( G `  suc  y )  <->  ( G `  A )  <  (
( G `  y
)  +  1 ) ) )
3534adantl 453 . . . . . . . 8  |-  ( ( A  e.  om  /\  y  e.  om )  ->  ( ( G `  A )  <  ( G `  suc  y )  <-> 
( G `  A
)  <  ( ( G `  y )  +  1 ) ) )
3631, 32om2uzuzi 11281 . . . . . . . . 9  |-  ( A  e.  om  ->  ( G `  A )  e.  ( ZZ>= `  C )
)
3731, 32om2uzuzi 11281 . . . . . . . . 9  |-  ( y  e.  om  ->  ( G `  y )  e.  ( ZZ>= `  C )
)
38 eluzelz 10488 . . . . . . . . . 10  |-  ( ( G `  A )  e.  ( ZZ>= `  C
)  ->  ( G `  A )  e.  ZZ )
39 eluzelz 10488 . . . . . . . . . 10  |-  ( ( G `  y )  e.  ( ZZ>= `  C
)  ->  ( G `  y )  e.  ZZ )
40 zleltp1 10318 . . . . . . . . . 10  |-  ( ( ( G `  A
)  e.  ZZ  /\  ( G `  y )  e.  ZZ )  -> 
( ( G `  A )  <_  ( G `  y )  <->  ( G `  A )  <  ( ( G `
 y )  +  1 ) ) )
4138, 39, 40syl2an 464 . . . . . . . . 9  |-  ( ( ( G `  A
)  e.  ( ZZ>= `  C )  /\  ( G `  y )  e.  ( ZZ>= `  C )
)  ->  ( ( G `  A )  <_  ( G `  y
)  <->  ( G `  A )  <  (
( G `  y
)  +  1 ) ) )
4236, 37, 41syl2an 464 . . . . . . . 8  |-  ( ( A  e.  om  /\  y  e.  om )  ->  ( ( G `  A )  <_  ( G `  y )  <->  ( G `  A )  <  ( ( G `
 y )  +  1 ) ) )
4336, 38syl 16 . . . . . . . . . 10  |-  ( A  e.  om  ->  ( G `  A )  e.  ZZ )
4443zred 10367 . . . . . . . . 9  |-  ( A  e.  om  ->  ( G `  A )  e.  RR )
4537, 39syl 16 . . . . . . . . . 10  |-  ( y  e.  om  ->  ( G `  y )  e.  ZZ )
4645zred 10367 . . . . . . . . 9  |-  ( y  e.  om  ->  ( G `  y )  e.  RR )
47 leloe 9153 . . . . . . . . 9  |-  ( ( ( G `  A
)  e.  RR  /\  ( G `  y )  e.  RR )  -> 
( ( G `  A )  <_  ( G `  y )  <->  ( ( G `  A
)  <  ( G `  y )  \/  ( G `  A )  =  ( G `  y ) ) ) )
4844, 46, 47syl2an 464 . . . . . . . 8  |-  ( ( A  e.  om  /\  y  e.  om )  ->  ( ( G `  A )  <_  ( G `  y )  <->  ( ( G `  A
)  <  ( G `  y )  \/  ( G `  A )  =  ( G `  y ) ) ) )
4935, 42, 483bitr2rd 274 . . . . . . 7  |-  ( ( A  e.  om  /\  y  e.  om )  ->  ( ( ( G `
 A )  < 
( G `  y
)  \/  ( G `
 A )  =  ( G `  y
) )  <->  ( G `  A )  <  ( G `  suc  y ) ) )
5030, 49imbi12d 312 . . . . . 6  |-  ( ( A  e.  om  /\  y  e.  om )  ->  ( ( ( A  e.  y  \/  A  =  y )  -> 
( ( G `  A )  <  ( G `  y )  \/  ( G `  A
)  =  ( G `
 y ) ) )  <->  ( A  e. 
suc  y  ->  ( G `  A )  <  ( G `  suc  y ) ) ) )
5127, 50syl5ib 211 . . . . 5  |-  ( ( A  e.  om  /\  y  e.  om )  ->  ( ( A  e.  y  ->  ( G `  A )  <  ( G `  y )
)  ->  ( A  e.  suc  y  ->  ( G `  A )  <  ( G `  suc  y ) ) ) )
5251expcom 425 . . . 4  |-  ( y  e.  om  ->  ( A  e.  om  ->  ( ( A  e.  y  ->  ( G `  A )  <  ( G `  y )
)  ->  ( A  e.  suc  y  ->  ( G `  A )  <  ( G `  suc  y ) ) ) ) )
5352a2d 24 . . 3  |-  ( y  e.  om  ->  (
( A  e.  om  ->  ( A  e.  y  ->  ( G `  A )  <  ( G `  y )
) )  ->  ( A  e.  om  ->  ( A  e.  suc  y  ->  ( G `  A
)  <  ( G `  suc  y ) ) ) ) )
545, 10, 15, 20, 23, 53finds 4863 . 2  |-  ( B  e.  om  ->  ( A  e.  om  ->  ( A  e.  B  -> 
( G `  A
)  <  ( G `  B ) ) ) )
5554impcom 420 1  |-  ( ( A  e.  om  /\  B  e.  om )  ->  ( A  e.  B  ->  ( G `  A
)  <  ( G `  B ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    \/ wo 358    /\ wa 359    = wceq 1652    e. wcel 1725   _Vcvv 2948   (/)c0 3620   class class class wbr 4204    e. cmpt 4258   suc csuc 4575   omcom 4837    |` cres 4872   ` cfv 5446  (class class class)co 6073   reccrdg 6659   RRcr 8981   1c1 8983    + caddc 8985    < clt 9112    <_ cle 9113   ZZcz 10274   ZZ>=cuz 10480
This theorem is referenced by:  om2uzlt2i  11283  om2uzf1oi  11285
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-sep 4322  ax-nul 4330  ax-pow 4369  ax-pr 4395  ax-un 4693  ax-cnex 9038  ax-resscn 9039  ax-1cn 9040  ax-icn 9041  ax-addcl 9042  ax-addrcl 9043  ax-mulcl 9044  ax-mulrcl 9045  ax-mulcom 9046  ax-addass 9047  ax-mulass 9048  ax-distr 9049  ax-i2m1 9050  ax-1ne0 9051  ax-1rid 9052  ax-rnegex 9053  ax-rrecex 9054  ax-cnre 9055  ax-pre-lttri 9056  ax-pre-lttrn 9057  ax-pre-ltadd 9058  ax-pre-mulgt0 9059
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-nel 2601  df-ral 2702  df-rex 2703  df-reu 2704  df-rab 2706  df-v 2950  df-sbc 3154  df-csb 3244  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-pss 3328  df-nul 3621  df-if 3732  df-pw 3793  df-sn 3812  df-pr 3813  df-tp 3814  df-op 3815  df-uni 4008  df-iun 4087  df-br 4205  df-opab 4259  df-mpt 4260  df-tr 4295  df-eprel 4486  df-id 4490  df-po 4495  df-so 4496  df-fr 4533  df-we 4535  df-ord 4576  df-on 4577  df-lim 4578  df-suc 4579  df-om 4838  df-xp 4876  df-rel 4877  df-cnv 4878  df-co 4879  df-dm 4880  df-rn 4881  df-res 4882  df-ima 4883  df-iota 5410  df-fun 5448  df-fn 5449  df-f 5450  df-f1 5451  df-fo 5452  df-f1o 5453  df-fv 5454  df-ov 6076  df-oprab 6077  df-mpt2 6078  df-riota 6541  df-recs 6625  df-rdg 6660  df-er 6897  df-en 7102  df-dom 7103  df-sdom 7104  df-pnf 9114  df-mnf 9115  df-xr 9116  df-ltxr 9117  df-le 9118  df-sub 9285  df-neg 9286  df-nn 9993  df-n0 10214  df-z 10275  df-uz 10481
  Copyright terms: Public domain W3C validator