MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  om2uzlti Unicode version

Theorem om2uzlti 11029
Description: Less-than relation for  G (see om2uz0i 11026). (Contributed by NM, 3-Oct-2004.) (Revised by Mario Carneiro, 13-Sep-2013.)
Hypotheses
Ref Expression
om2uz.1  |-  C  e.  ZZ
om2uz.2  |-  G  =  ( rec ( ( x  e.  _V  |->  ( x  +  1 ) ) ,  C )  |`  om )
Assertion
Ref Expression
om2uzlti  |-  ( ( A  e.  om  /\  B  e.  om )  ->  ( A  e.  B  ->  ( G `  A
)  <  ( G `  B ) ) )
Distinct variable group:    x, C
Allowed substitution hints:    A( x)    B( x)    G( x)

Proof of Theorem om2uzlti
Dummy variables  y 
z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eleq2 2357 . . . . 5  |-  ( z  =  (/)  ->  ( A  e.  z  <->  A  e.  (/) ) )
2 fveq2 5541 . . . . . 6  |-  ( z  =  (/)  ->  ( G `
 z )  =  ( G `  (/) ) )
32breq2d 4051 . . . . 5  |-  ( z  =  (/)  ->  ( ( G `  A )  <  ( G `  z )  <->  ( G `  A )  <  ( G `  (/) ) ) )
41, 3imbi12d 311 . . . 4  |-  ( z  =  (/)  ->  ( ( A  e.  z  -> 
( G `  A
)  <  ( G `  z ) )  <->  ( A  e.  (/)  ->  ( G `  A )  <  ( G `  (/) ) ) ) )
54imbi2d 307 . . 3  |-  ( z  =  (/)  ->  ( ( A  e.  om  ->  ( A  e.  z  -> 
( G `  A
)  <  ( G `  z ) ) )  <-> 
( A  e.  om  ->  ( A  e.  (/)  ->  ( G `  A
)  <  ( G `  (/) ) ) ) ) )
6 eleq2 2357 . . . . 5  |-  ( z  =  y  ->  ( A  e.  z  <->  A  e.  y ) )
7 fveq2 5541 . . . . . 6  |-  ( z  =  y  ->  ( G `  z )  =  ( G `  y ) )
87breq2d 4051 . . . . 5  |-  ( z  =  y  ->  (
( G `  A
)  <  ( G `  z )  <->  ( G `  A )  <  ( G `  y )
) )
96, 8imbi12d 311 . . . 4  |-  ( z  =  y  ->  (
( A  e.  z  ->  ( G `  A )  <  ( G `  z )
)  <->  ( A  e.  y  ->  ( G `  A )  <  ( G `  y )
) ) )
109imbi2d 307 . . 3  |-  ( z  =  y  ->  (
( A  e.  om  ->  ( A  e.  z  ->  ( G `  A )  <  ( G `  z )
) )  <->  ( A  e.  om  ->  ( A  e.  y  ->  ( G `
 A )  < 
( G `  y
) ) ) ) )
11 eleq2 2357 . . . . 5  |-  ( z  =  suc  y  -> 
( A  e.  z  <-> 
A  e.  suc  y
) )
12 fveq2 5541 . . . . . 6  |-  ( z  =  suc  y  -> 
( G `  z
)  =  ( G `
 suc  y )
)
1312breq2d 4051 . . . . 5  |-  ( z  =  suc  y  -> 
( ( G `  A )  <  ( G `  z )  <->  ( G `  A )  <  ( G `  suc  y ) ) )
1411, 13imbi12d 311 . . . 4  |-  ( z  =  suc  y  -> 
( ( A  e.  z  ->  ( G `  A )  <  ( G `  z )
)  <->  ( A  e. 
suc  y  ->  ( G `  A )  <  ( G `  suc  y ) ) ) )
1514imbi2d 307 . . 3  |-  ( z  =  suc  y  -> 
( ( A  e. 
om  ->  ( A  e.  z  ->  ( G `  A )  <  ( G `  z )
) )  <->  ( A  e.  om  ->  ( A  e.  suc  y  ->  ( G `  A )  <  ( G `  suc  y ) ) ) ) )
16 eleq2 2357 . . . . 5  |-  ( z  =  B  ->  ( A  e.  z  <->  A  e.  B ) )
17 fveq2 5541 . . . . . 6  |-  ( z  =  B  ->  ( G `  z )  =  ( G `  B ) )
1817breq2d 4051 . . . . 5  |-  ( z  =  B  ->  (
( G `  A
)  <  ( G `  z )  <->  ( G `  A )  <  ( G `  B )
) )
1916, 18imbi12d 311 . . . 4  |-  ( z  =  B  ->  (
( A  e.  z  ->  ( G `  A )  <  ( G `  z )
)  <->  ( A  e.  B  ->  ( G `  A )  <  ( G `  B )
) ) )
2019imbi2d 307 . . 3  |-  ( z  =  B  ->  (
( A  e.  om  ->  ( A  e.  z  ->  ( G `  A )  <  ( G `  z )
) )  <->  ( A  e.  om  ->  ( A  e.  B  ->  ( G `
 A )  < 
( G `  B
) ) ) ) )
21 noel 3472 . . . . 5  |-  -.  A  e.  (/)
2221pm2.21i 123 . . . 4  |-  ( A  e.  (/)  ->  ( G `  A )  <  ( G `  (/) ) )
2322a1i 10 . . 3  |-  ( A  e.  om  ->  ( A  e.  (/)  ->  ( G `  A )  <  ( G `  (/) ) ) )
24 id 19 . . . . . . 7  |-  ( ( A  e.  y  -> 
( G `  A
)  <  ( G `  y ) )  -> 
( A  e.  y  ->  ( G `  A )  <  ( G `  y )
) )
25 fveq2 5541 . . . . . . . 8  |-  ( A  =  y  ->  ( G `  A )  =  ( G `  y ) )
2625a1i 10 . . . . . . 7  |-  ( ( A  e.  y  -> 
( G `  A
)  <  ( G `  y ) )  -> 
( A  =  y  ->  ( G `  A )  =  ( G `  y ) ) )
2724, 26orim12d 811 . . . . . 6  |-  ( ( A  e.  y  -> 
( G `  A
)  <  ( G `  y ) )  -> 
( ( A  e.  y  \/  A  =  y )  ->  (
( G `  A
)  <  ( G `  y )  \/  ( G `  A )  =  ( G `  y ) ) ) )
28 elsuc2g 4476 . . . . . . . . 9  |-  ( y  e.  om  ->  ( A  e.  suc  y  <->  ( A  e.  y  \/  A  =  y ) ) )
2928bicomd 192 . . . . . . . 8  |-  ( y  e.  om  ->  (
( A  e.  y  \/  A  =  y )  <->  A  e.  suc  y ) )
3029adantl 452 . . . . . . 7  |-  ( ( A  e.  om  /\  y  e.  om )  ->  ( ( A  e.  y  \/  A  =  y )  <->  A  e.  suc  y ) )
31 om2uz.1 . . . . . . . . . . 11  |-  C  e.  ZZ
32 om2uz.2 . . . . . . . . . . 11  |-  G  =  ( rec ( ( x  e.  _V  |->  ( x  +  1 ) ) ,  C )  |`  om )
3331, 32om2uzsuci 11027 . . . . . . . . . 10  |-  ( y  e.  om  ->  ( G `  suc  y )  =  ( ( G `
 y )  +  1 ) )
3433breq2d 4051 . . . . . . . . 9  |-  ( y  e.  om  ->  (
( G `  A
)  <  ( G `  suc  y )  <->  ( G `  A )  <  (
( G `  y
)  +  1 ) ) )
3534adantl 452 . . . . . . . 8  |-  ( ( A  e.  om  /\  y  e.  om )  ->  ( ( G `  A )  <  ( G `  suc  y )  <-> 
( G `  A
)  <  ( ( G `  y )  +  1 ) ) )
3631, 32om2uzuzi 11028 . . . . . . . . 9  |-  ( A  e.  om  ->  ( G `  A )  e.  ( ZZ>= `  C )
)
3731, 32om2uzuzi 11028 . . . . . . . . 9  |-  ( y  e.  om  ->  ( G `  y )  e.  ( ZZ>= `  C )
)
38 eluzelz 10254 . . . . . . . . . 10  |-  ( ( G `  A )  e.  ( ZZ>= `  C
)  ->  ( G `  A )  e.  ZZ )
39 eluzelz 10254 . . . . . . . . . 10  |-  ( ( G `  y )  e.  ( ZZ>= `  C
)  ->  ( G `  y )  e.  ZZ )
40 zleltp1 10084 . . . . . . . . . 10  |-  ( ( ( G `  A
)  e.  ZZ  /\  ( G `  y )  e.  ZZ )  -> 
( ( G `  A )  <_  ( G `  y )  <->  ( G `  A )  <  ( ( G `
 y )  +  1 ) ) )
4138, 39, 40syl2an 463 . . . . . . . . 9  |-  ( ( ( G `  A
)  e.  ( ZZ>= `  C )  /\  ( G `  y )  e.  ( ZZ>= `  C )
)  ->  ( ( G `  A )  <_  ( G `  y
)  <->  ( G `  A )  <  (
( G `  y
)  +  1 ) ) )
4236, 37, 41syl2an 463 . . . . . . . 8  |-  ( ( A  e.  om  /\  y  e.  om )  ->  ( ( G `  A )  <_  ( G `  y )  <->  ( G `  A )  <  ( ( G `
 y )  +  1 ) ) )
4336, 38syl 15 . . . . . . . . . 10  |-  ( A  e.  om  ->  ( G `  A )  e.  ZZ )
4443zred 10133 . . . . . . . . 9  |-  ( A  e.  om  ->  ( G `  A )  e.  RR )
4537, 39syl 15 . . . . . . . . . 10  |-  ( y  e.  om  ->  ( G `  y )  e.  ZZ )
4645zred 10133 . . . . . . . . 9  |-  ( y  e.  om  ->  ( G `  y )  e.  RR )
47 leloe 8924 . . . . . . . . 9  |-  ( ( ( G `  A
)  e.  RR  /\  ( G `  y )  e.  RR )  -> 
( ( G `  A )  <_  ( G `  y )  <->  ( ( G `  A
)  <  ( G `  y )  \/  ( G `  A )  =  ( G `  y ) ) ) )
4844, 46, 47syl2an 463 . . . . . . . 8  |-  ( ( A  e.  om  /\  y  e.  om )  ->  ( ( G `  A )  <_  ( G `  y )  <->  ( ( G `  A
)  <  ( G `  y )  \/  ( G `  A )  =  ( G `  y ) ) ) )
4935, 42, 483bitr2rd 273 . . . . . . 7  |-  ( ( A  e.  om  /\  y  e.  om )  ->  ( ( ( G `
 A )  < 
( G `  y
)  \/  ( G `
 A )  =  ( G `  y
) )  <->  ( G `  A )  <  ( G `  suc  y ) ) )
5030, 49imbi12d 311 . . . . . 6  |-  ( ( A  e.  om  /\  y  e.  om )  ->  ( ( ( A  e.  y  \/  A  =  y )  -> 
( ( G `  A )  <  ( G `  y )  \/  ( G `  A
)  =  ( G `
 y ) ) )  <->  ( A  e. 
suc  y  ->  ( G `  A )  <  ( G `  suc  y ) ) ) )
5127, 50syl5ib 210 . . . . 5  |-  ( ( A  e.  om  /\  y  e.  om )  ->  ( ( A  e.  y  ->  ( G `  A )  <  ( G `  y )
)  ->  ( A  e.  suc  y  ->  ( G `  A )  <  ( G `  suc  y ) ) ) )
5251expcom 424 . . . 4  |-  ( y  e.  om  ->  ( A  e.  om  ->  ( ( A  e.  y  ->  ( G `  A )  <  ( G `  y )
)  ->  ( A  e.  suc  y  ->  ( G `  A )  <  ( G `  suc  y ) ) ) ) )
5352a2d 23 . . 3  |-  ( y  e.  om  ->  (
( A  e.  om  ->  ( A  e.  y  ->  ( G `  A )  <  ( G `  y )
) )  ->  ( A  e.  om  ->  ( A  e.  suc  y  ->  ( G `  A
)  <  ( G `  suc  y ) ) ) ) )
545, 10, 15, 20, 23, 53finds 4698 . 2  |-  ( B  e.  om  ->  ( A  e.  om  ->  ( A  e.  B  -> 
( G `  A
)  <  ( G `  B ) ) ) )
5554impcom 419 1  |-  ( ( A  e.  om  /\  B  e.  om )  ->  ( A  e.  B  ->  ( G `  A
)  <  ( G `  B ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    \/ wo 357    /\ wa 358    = wceq 1632    e. wcel 1696   _Vcvv 2801   (/)c0 3468   class class class wbr 4039    e. cmpt 4093   suc csuc 4410   omcom 4672    |` cres 4707   ` cfv 5271  (class class class)co 5874   reccrdg 6438   RRcr 8752   1c1 8754    + caddc 8756    < clt 8883    <_ cle 8884   ZZcz 10040   ZZ>=cuz 10246
This theorem is referenced by:  om2uzlt2i  11030  om2uzf1oi  11032
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528  ax-cnex 8809  ax-resscn 8810  ax-1cn 8811  ax-icn 8812  ax-addcl 8813  ax-addrcl 8814  ax-mulcl 8815  ax-mulrcl 8816  ax-mulcom 8817  ax-addass 8818  ax-mulass 8819  ax-distr 8820  ax-i2m1 8821  ax-1ne0 8822  ax-1rid 8823  ax-rnegex 8824  ax-rrecex 8825  ax-cnre 8826  ax-pre-lttri 8827  ax-pre-lttrn 8828  ax-pre-ltadd 8829  ax-pre-mulgt0 8830
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-nel 2462  df-ral 2561  df-rex 2562  df-reu 2563  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pss 3181  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-tp 3661  df-op 3662  df-uni 3844  df-iun 3923  df-br 4040  df-opab 4094  df-mpt 4095  df-tr 4130  df-eprel 4321  df-id 4325  df-po 4330  df-so 4331  df-fr 4368  df-we 4370  df-ord 4411  df-on 4412  df-lim 4413  df-suc 4414  df-om 4673  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-ov 5877  df-oprab 5878  df-mpt2 5879  df-riota 6320  df-recs 6404  df-rdg 6439  df-er 6676  df-en 6880  df-dom 6881  df-sdom 6882  df-pnf 8885  df-mnf 8886  df-xr 8887  df-ltxr 8888  df-le 8889  df-sub 9055  df-neg 9056  df-nn 9763  df-n0 9982  df-z 10041  df-uz 10247
  Copyright terms: Public domain W3C validator