MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  om2uzrani Unicode version

Theorem om2uzrani 11212
Description: Range of  G (see om2uz0i 11207). (Contributed by NM, 3-Oct-2004.) (Revised by Mario Carneiro, 13-Sep-2013.)
Hypotheses
Ref Expression
om2uz.1  |-  C  e.  ZZ
om2uz.2  |-  G  =  ( rec ( ( x  e.  _V  |->  ( x  +  1 ) ) ,  C )  |`  om )
Assertion
Ref Expression
om2uzrani  |-  ran  G  =  ( ZZ>= `  C
)
Distinct variable group:    x, C
Allowed substitution hint:    G( x)

Proof of Theorem om2uzrani
Dummy variables  y 
z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 frfnom 6621 . . . . . 6  |-  ( rec ( ( x  e. 
_V  |->  ( x  + 
1 ) ) ,  C )  |`  om )  Fn  om
2 om2uz.2 . . . . . . 7  |-  G  =  ( rec ( ( x  e.  _V  |->  ( x  +  1 ) ) ,  C )  |`  om )
32fneq1i 5472 . . . . . 6  |-  ( G  Fn  om  <->  ( rec ( ( x  e. 
_V  |->  ( x  + 
1 ) ) ,  C )  |`  om )  Fn  om )
41, 3mpbir 201 . . . . 5  |-  G  Fn  om
5 fvelrnb 5706 . . . . 5  |-  ( G  Fn  om  ->  (
y  e.  ran  G  <->  E. z  e.  om  ( G `  z )  =  y ) )
64, 5ax-mp 8 . . . 4  |-  ( y  e.  ran  G  <->  E. z  e.  om  ( G `  z )  =  y )
7 om2uz.1 . . . . . . 7  |-  C  e.  ZZ
87, 2om2uzuzi 11209 . . . . . 6  |-  ( z  e.  om  ->  ( G `  z )  e.  ( ZZ>= `  C )
)
9 eleq1 2440 . . . . . 6  |-  ( ( G `  z )  =  y  ->  (
( G `  z
)  e.  ( ZZ>= `  C )  <->  y  e.  ( ZZ>= `  C )
) )
108, 9syl5ibcom 212 . . . . 5  |-  ( z  e.  om  ->  (
( G `  z
)  =  y  -> 
y  e.  ( ZZ>= `  C ) ) )
1110rexlimiv 2760 . . . 4  |-  ( E. z  e.  om  ( G `  z )  =  y  ->  y  e.  ( ZZ>= `  C )
)
126, 11sylbi 188 . . 3  |-  ( y  e.  ran  G  -> 
y  e.  ( ZZ>= `  C ) )
13 eleq1 2440 . . . 4  |-  ( z  =  C  ->  (
z  e.  ran  G  <->  C  e.  ran  G ) )
14 eleq1 2440 . . . 4  |-  ( z  =  y  ->  (
z  e.  ran  G  <->  y  e.  ran  G ) )
15 eleq1 2440 . . . 4  |-  ( z  =  ( y  +  1 )  ->  (
z  e.  ran  G  <->  ( y  +  1 )  e.  ran  G ) )
167, 2om2uz0i 11207 . . . . 5  |-  ( G `
 (/) )  =  C
17 peano1 4797 . . . . . 6  |-  (/)  e.  om
18 fnfvelrn 5799 . . . . . 6  |-  ( ( G  Fn  om  /\  (/) 
e.  om )  ->  ( G `  (/) )  e. 
ran  G )
194, 17, 18mp2an 654 . . . . 5  |-  ( G `
 (/) )  e.  ran  G
2016, 19eqeltrri 2451 . . . 4  |-  C  e. 
ran  G
217, 2om2uzsuci 11208 . . . . . . . . 9  |-  ( z  e.  om  ->  ( G `  suc  z )  =  ( ( G `
 z )  +  1 ) )
22 oveq1 6020 . . . . . . . . 9  |-  ( ( G `  z )  =  y  ->  (
( G `  z
)  +  1 )  =  ( y  +  1 ) )
2321, 22sylan9eq 2432 . . . . . . . 8  |-  ( ( z  e.  om  /\  ( G `  z )  =  y )  -> 
( G `  suc  z )  =  ( y  +  1 ) )
24 peano2 4798 . . . . . . . . . 10  |-  ( z  e.  om  ->  suc  z  e.  om )
25 fnfvelrn 5799 . . . . . . . . . 10  |-  ( ( G  Fn  om  /\  suc  z  e.  om )  ->  ( G `  suc  z )  e.  ran  G )
264, 24, 25sylancr 645 . . . . . . . . 9  |-  ( z  e.  om  ->  ( G `  suc  z )  e.  ran  G )
2726adantr 452 . . . . . . . 8  |-  ( ( z  e.  om  /\  ( G `  z )  =  y )  -> 
( G `  suc  z )  e.  ran  G )
2823, 27eqeltrrd 2455 . . . . . . 7  |-  ( ( z  e.  om  /\  ( G `  z )  =  y )  -> 
( y  +  1 )  e.  ran  G
)
2928rexlimiva 2761 . . . . . 6  |-  ( E. z  e.  om  ( G `  z )  =  y  ->  ( y  +  1 )  e. 
ran  G )
306, 29sylbi 188 . . . . 5  |-  ( y  e.  ran  G  -> 
( y  +  1 )  e.  ran  G
)
3130a1i 11 . . . 4  |-  ( y  e.  ( ZZ>= `  C
)  ->  ( y  e.  ran  G  ->  (
y  +  1 )  e.  ran  G ) )
327, 13, 14, 15, 14, 20, 31uzind4i 10463 . . 3  |-  ( y  e.  ( ZZ>= `  C
)  ->  y  e.  ran  G )
3312, 32impbii 181 . 2  |-  ( y  e.  ran  G  <->  y  e.  ( ZZ>= `  C )
)
3433eqriv 2377 1  |-  ran  G  =  ( ZZ>= `  C
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359    = wceq 1649    e. wcel 1717   E.wrex 2643   _Vcvv 2892   (/)c0 3564    e. cmpt 4200   suc csuc 4517   omcom 4778   ran crn 4812    |` cres 4813    Fn wfn 5382   ` cfv 5387  (class class class)co 6013   reccrdg 6596   1c1 8917    + caddc 8919   ZZcz 10207   ZZ>=cuz 10413
This theorem is referenced by:  om2uzf1oi  11213
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-13 1719  ax-14 1721  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2361  ax-sep 4264  ax-nul 4272  ax-pow 4311  ax-pr 4337  ax-un 4634  ax-cnex 8972  ax-resscn 8973  ax-1cn 8974  ax-icn 8975  ax-addcl 8976  ax-addrcl 8977  ax-mulcl 8978  ax-mulrcl 8979  ax-mulcom 8980  ax-addass 8981  ax-mulass 8982  ax-distr 8983  ax-i2m1 8984  ax-1ne0 8985  ax-1rid 8986  ax-rnegex 8987  ax-rrecex 8988  ax-cnre 8989  ax-pre-lttri 8990  ax-pre-lttrn 8991  ax-pre-ltadd 8992  ax-pre-mulgt0 8993
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2235  df-mo 2236  df-clab 2367  df-cleq 2373  df-clel 2376  df-nfc 2505  df-ne 2545  df-nel 2546  df-ral 2647  df-rex 2648  df-reu 2649  df-rab 2651  df-v 2894  df-sbc 3098  df-csb 3188  df-dif 3259  df-un 3261  df-in 3263  df-ss 3270  df-pss 3272  df-nul 3565  df-if 3676  df-pw 3737  df-sn 3756  df-pr 3757  df-tp 3758  df-op 3759  df-uni 3951  df-iun 4030  df-br 4147  df-opab 4201  df-mpt 4202  df-tr 4237  df-eprel 4428  df-id 4432  df-po 4437  df-so 4438  df-fr 4475  df-we 4477  df-ord 4518  df-on 4519  df-lim 4520  df-suc 4521  df-om 4779  df-xp 4817  df-rel 4818  df-cnv 4819  df-co 4820  df-dm 4821  df-rn 4822  df-res 4823  df-ima 4824  df-iota 5351  df-fun 5389  df-fn 5390  df-f 5391  df-f1 5392  df-fo 5393  df-f1o 5394  df-fv 5395  df-ov 6016  df-oprab 6017  df-mpt2 6018  df-riota 6478  df-recs 6562  df-rdg 6597  df-er 6834  df-en 7039  df-dom 7040  df-sdom 7041  df-pnf 9048  df-mnf 9049  df-xr 9050  df-ltxr 9051  df-le 9052  df-sub 9218  df-neg 9219  df-nn 9926  df-n0 10147  df-z 10208  df-uz 10414
  Copyright terms: Public domain W3C validator