MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  om2uzrdg Unicode version

Theorem om2uzrdg 11223
Description: A helper lemma for the value of a recursive definition generator on upper integers (typically either  NN or  NN0) with characteristic function  F ( x ,  y ) and initial value  A. Normally  F is a function on the partition, and  A is a member of the partition. See also comment in om2uz0i 11214. (Contributed by Mario Carneiro, 26-Jun-2013.) (Revised by Mario Carneiro, 18-Nov-2014.)
Hypotheses
Ref Expression
om2uz.1  |-  C  e.  ZZ
om2uz.2  |-  G  =  ( rec ( ( x  e.  _V  |->  ( x  +  1 ) ) ,  C )  |`  om )
uzrdg.1  |-  A  e. 
_V
uzrdg.2  |-  R  =  ( rec ( ( x  e.  _V , 
y  e.  _V  |->  <.
( x  +  1 ) ,  ( x F y ) >.
) ,  <. C ,  A >. )  |`  om )
Assertion
Ref Expression
om2uzrdg  |-  ( B  e.  om  ->  ( R `  B )  =  <. ( G `  B ) ,  ( 2nd `  ( R `
 B ) )
>. )
Distinct variable groups:    y, A    x, y, C    y, G    x, F, y
Allowed substitution hints:    A( x)    B( x, y)    R( x, y)    G( x)

Proof of Theorem om2uzrdg
Dummy variables  z  w  v are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 5668 . . 3  |-  ( z  =  (/)  ->  ( R `
 z )  =  ( R `  (/) ) )
2 fveq2 5668 . . . 4  |-  ( z  =  (/)  ->  ( G `
 z )  =  ( G `  (/) ) )
31fveq2d 5672 . . . 4  |-  ( z  =  (/)  ->  ( 2nd `  ( R `  z
) )  =  ( 2nd `  ( R `
 (/) ) ) )
42, 3opeq12d 3934 . . 3  |-  ( z  =  (/)  ->  <. ( G `  z ) ,  ( 2nd `  ( R `  z )
) >.  =  <. ( G `  (/) ) ,  ( 2nd `  ( R `  (/) ) )
>. )
51, 4eqeq12d 2401 . 2  |-  ( z  =  (/)  ->  ( ( R `  z )  =  <. ( G `  z ) ,  ( 2nd `  ( R `
 z ) )
>. 
<->  ( R `  (/) )  = 
<. ( G `  (/) ) ,  ( 2nd `  ( R `  (/) ) )
>. ) )
6 fveq2 5668 . . 3  |-  ( z  =  v  ->  ( R `  z )  =  ( R `  v ) )
7 fveq2 5668 . . . 4  |-  ( z  =  v  ->  ( G `  z )  =  ( G `  v ) )
86fveq2d 5672 . . . 4  |-  ( z  =  v  ->  ( 2nd `  ( R `  z ) )  =  ( 2nd `  ( R `  v )
) )
97, 8opeq12d 3934 . . 3  |-  ( z  =  v  ->  <. ( G `  z ) ,  ( 2nd `  ( R `  z )
) >.  =  <. ( G `  v ) ,  ( 2nd `  ( R `  v )
) >. )
106, 9eqeq12d 2401 . 2  |-  ( z  =  v  ->  (
( R `  z
)  =  <. ( G `  z ) ,  ( 2nd `  ( R `  z )
) >. 
<->  ( R `  v
)  =  <. ( G `  v ) ,  ( 2nd `  ( R `  v )
) >. ) )
11 fveq2 5668 . . 3  |-  ( z  =  suc  v  -> 
( R `  z
)  =  ( R `
 suc  v )
)
12 fveq2 5668 . . . 4  |-  ( z  =  suc  v  -> 
( G `  z
)  =  ( G `
 suc  v )
)
1311fveq2d 5672 . . . 4  |-  ( z  =  suc  v  -> 
( 2nd `  ( R `  z )
)  =  ( 2nd `  ( R `  suc  v ) ) )
1412, 13opeq12d 3934 . . 3  |-  ( z  =  suc  v  ->  <. ( G `  z
) ,  ( 2nd `  ( R `  z
) ) >.  =  <. ( G `  suc  v
) ,  ( 2nd `  ( R `  suc  v ) ) >.
)
1511, 14eqeq12d 2401 . 2  |-  ( z  =  suc  v  -> 
( ( R `  z )  =  <. ( G `  z ) ,  ( 2nd `  ( R `  z )
) >. 
<->  ( R `  suc  v )  =  <. ( G `  suc  v
) ,  ( 2nd `  ( R `  suc  v ) ) >.
) )
16 fveq2 5668 . . 3  |-  ( z  =  B  ->  ( R `  z )  =  ( R `  B ) )
17 fveq2 5668 . . . 4  |-  ( z  =  B  ->  ( G `  z )  =  ( G `  B ) )
1816fveq2d 5672 . . . 4  |-  ( z  =  B  ->  ( 2nd `  ( R `  z ) )  =  ( 2nd `  ( R `  B )
) )
1917, 18opeq12d 3934 . . 3  |-  ( z  =  B  ->  <. ( G `  z ) ,  ( 2nd `  ( R `  z )
) >.  =  <. ( G `  B ) ,  ( 2nd `  ( R `  B )
) >. )
2016, 19eqeq12d 2401 . 2  |-  ( z  =  B  ->  (
( R `  z
)  =  <. ( G `  z ) ,  ( 2nd `  ( R `  z )
) >. 
<->  ( R `  B
)  =  <. ( G `  B ) ,  ( 2nd `  ( R `  B )
) >. ) )
21 uzrdg.2 . . . . 5  |-  R  =  ( rec ( ( x  e.  _V , 
y  e.  _V  |->  <.
( x  +  1 ) ,  ( x F y ) >.
) ,  <. C ,  A >. )  |`  om )
2221fveq1i 5669 . . . 4  |-  ( R `
 (/) )  =  ( ( rec ( ( x  e.  _V , 
y  e.  _V  |->  <.
( x  +  1 ) ,  ( x F y ) >.
) ,  <. C ,  A >. )  |`  om ) `  (/) )
23 opex 4368 . . . . 5  |-  <. C ,  A >.  e.  _V
24 fr0g 6629 . . . . 5  |-  ( <. C ,  A >.  e. 
_V  ->  ( ( rec ( ( x  e. 
_V ,  y  e. 
_V  |->  <. ( x  + 
1 ) ,  ( x F y )
>. ) ,  <. C ,  A >. )  |`  om ) `  (/) )  =  <. C ,  A >. )
2523, 24ax-mp 8 . . . 4  |-  ( ( rec ( ( x  e.  _V ,  y  e.  _V  |->  <. (
x  +  1 ) ,  ( x F y ) >. ) ,  <. C ,  A >. )  |`  om ) `  (/) )  =  <. C ,  A >.
2622, 25eqtri 2407 . . 3  |-  ( R `
 (/) )  =  <. C ,  A >.
27 om2uz.1 . . . . 5  |-  C  e.  ZZ
28 om2uz.2 . . . . 5  |-  G  =  ( rec ( ( x  e.  _V  |->  ( x  +  1 ) ) ,  C )  |`  om )
2927, 28om2uz0i 11214 . . . 4  |-  ( G `
 (/) )  =  C
3026fveq2i 5671 . . . . 5  |-  ( 2nd `  ( R `  (/) ) )  =  ( 2nd `  <. C ,  A >. )
3127elexi 2908 . . . . . 6  |-  C  e. 
_V
32 uzrdg.1 . . . . . 6  |-  A  e. 
_V
3331, 32op2nd 6295 . . . . 5  |-  ( 2nd `  <. C ,  A >. )  =  A
3430, 33eqtri 2407 . . . 4  |-  ( 2nd `  ( R `  (/) ) )  =  A
3529, 34opeq12i 3931 . . 3  |-  <. ( G `  (/) ) ,  ( 2nd `  ( R `  (/) ) )
>.  =  <. C ,  A >.
3626, 35eqtr4i 2410 . 2  |-  ( R `
 (/) )  =  <. ( G `  (/) ) ,  ( 2nd `  ( R `  (/) ) )
>.
37 frsuc 6630 . . . . . 6  |-  ( v  e.  om  ->  (
( rec ( ( x  e.  _V , 
y  e.  _V  |->  <.
( x  +  1 ) ,  ( x F y ) >.
) ,  <. C ,  A >. )  |`  om ) `  suc  v )  =  ( ( x  e. 
_V ,  y  e. 
_V  |->  <. ( x  + 
1 ) ,  ( x F y )
>. ) `  ( ( rec ( ( x  e.  _V ,  y  e.  _V  |->  <. (
x  +  1 ) ,  ( x F y ) >. ) ,  <. C ,  A >. )  |`  om ) `  v ) ) )
3821fveq1i 5669 . . . . . 6  |-  ( R `
 suc  v )  =  ( ( rec ( ( x  e. 
_V ,  y  e. 
_V  |->  <. ( x  + 
1 ) ,  ( x F y )
>. ) ,  <. C ,  A >. )  |`  om ) `  suc  v )
3921fveq1i 5669 . . . . . . 7  |-  ( R `
 v )  =  ( ( rec (
( x  e.  _V ,  y  e.  _V  |->  <. ( x  +  1 ) ,  ( x F y ) >.
) ,  <. C ,  A >. )  |`  om ) `  v )
4039fveq2i 5671 . . . . . 6  |-  ( ( x  e.  _V , 
y  e.  _V  |->  <.
( x  +  1 ) ,  ( x F y ) >.
) `  ( R `  v ) )  =  ( ( x  e. 
_V ,  y  e. 
_V  |->  <. ( x  + 
1 ) ,  ( x F y )
>. ) `  ( ( rec ( ( x  e.  _V ,  y  e.  _V  |->  <. (
x  +  1 ) ,  ( x F y ) >. ) ,  <. C ,  A >. )  |`  om ) `  v ) )
4137, 38, 403eqtr4g 2444 . . . . 5  |-  ( v  e.  om  ->  ( R `  suc  v )  =  ( ( x  e.  _V ,  y  e.  _V  |->  <. (
x  +  1 ) ,  ( x F y ) >. ) `  ( R `  v
) ) )
42 fveq2 5668 . . . . . 6  |-  ( ( R `  v )  =  <. ( G `  v ) ,  ( 2nd `  ( R `
 v ) )
>.  ->  ( ( x  e.  _V ,  y  e.  _V  |->  <. (
x  +  1 ) ,  ( x F y ) >. ) `  ( R `  v
) )  =  ( ( x  e.  _V ,  y  e.  _V  |->  <. ( x  +  1 ) ,  ( x F y ) >.
) `  <. ( G `
 v ) ,  ( 2nd `  ( R `  v )
) >. ) )
43 df-ov 6023 . . . . . . 7  |-  ( ( G `  v ) ( x  e.  _V ,  y  e.  _V  |->  <. ( x  +  1 ) ,  ( x F y ) >.
) ( 2nd `  ( R `  v )
) )  =  ( ( x  e.  _V ,  y  e.  _V  |->  <. ( x  +  1 ) ,  ( x F y ) >.
) `  <. ( G `
 v ) ,  ( 2nd `  ( R `  v )
) >. )
44 fvex 5682 . . . . . . . 8  |-  ( G `
 v )  e. 
_V
45 fvex 5682 . . . . . . . 8  |-  ( 2nd `  ( R `  v
) )  e.  _V
46 oveq1 6027 . . . . . . . . . 10  |-  ( w  =  ( G `  v )  ->  (
w  +  1 )  =  ( ( G `
 v )  +  1 ) )
47 oveq1 6027 . . . . . . . . . 10  |-  ( w  =  ( G `  v )  ->  (
w F z )  =  ( ( G `
 v ) F z ) )
4846, 47opeq12d 3934 . . . . . . . . 9  |-  ( w  =  ( G `  v )  ->  <. (
w  +  1 ) ,  ( w F z ) >.  =  <. ( ( G `  v
)  +  1 ) ,  ( ( G `
 v ) F z ) >. )
49 oveq2 6028 . . . . . . . . . 10  |-  ( z  =  ( 2nd `  ( R `  v )
)  ->  ( ( G `  v ) F z )  =  ( ( G `  v ) F ( 2nd `  ( R `
 v ) ) ) )
5049opeq2d 3933 . . . . . . . . 9  |-  ( z  =  ( 2nd `  ( R `  v )
)  ->  <. ( ( G `  v )  +  1 ) ,  ( ( G `  v ) F z ) >.  =  <. ( ( G `  v
)  +  1 ) ,  ( ( G `
 v ) F ( 2nd `  ( R `  v )
) ) >. )
51 oveq1 6027 . . . . . . . . . . 11  |-  ( x  =  w  ->  (
x  +  1 )  =  ( w  + 
1 ) )
52 oveq1 6027 . . . . . . . . . . 11  |-  ( x  =  w  ->  (
x F y )  =  ( w F y ) )
5351, 52opeq12d 3934 . . . . . . . . . 10  |-  ( x  =  w  ->  <. (
x  +  1 ) ,  ( x F y ) >.  =  <. ( w  +  1 ) ,  ( w F y ) >. )
54 oveq2 6028 . . . . . . . . . . 11  |-  ( y  =  z  ->  (
w F y )  =  ( w F z ) )
5554opeq2d 3933 . . . . . . . . . 10  |-  ( y  =  z  ->  <. (
w  +  1 ) ,  ( w F y ) >.  =  <. ( w  +  1 ) ,  ( w F z ) >. )
5653, 55cbvmpt2v 6091 . . . . . . . . 9  |-  ( x  e.  _V ,  y  e.  _V  |->  <. (
x  +  1 ) ,  ( x F y ) >. )  =  ( w  e. 
_V ,  z  e. 
_V  |->  <. ( w  + 
1 ) ,  ( w F z )
>. )
57 opex 4368 . . . . . . . . 9  |-  <. (
( G `  v
)  +  1 ) ,  ( ( G `
 v ) F ( 2nd `  ( R `  v )
) ) >.  e.  _V
5848, 50, 56, 57ovmpt2 6148 . . . . . . . 8  |-  ( ( ( G `  v
)  e.  _V  /\  ( 2nd `  ( R `
 v ) )  e.  _V )  -> 
( ( G `  v ) ( x  e.  _V ,  y  e.  _V  |->  <. (
x  +  1 ) ,  ( x F y ) >. )
( 2nd `  ( R `  v )
) )  =  <. ( ( G `  v
)  +  1 ) ,  ( ( G `
 v ) F ( 2nd `  ( R `  v )
) ) >. )
5944, 45, 58mp2an 654 . . . . . . 7  |-  ( ( G `  v ) ( x  e.  _V ,  y  e.  _V  |->  <. ( x  +  1 ) ,  ( x F y ) >.
) ( 2nd `  ( R `  v )
) )  =  <. ( ( G `  v
)  +  1 ) ,  ( ( G `
 v ) F ( 2nd `  ( R `  v )
) ) >.
6043, 59eqtr3i 2409 . . . . . 6  |-  ( ( x  e.  _V , 
y  e.  _V  |->  <.
( x  +  1 ) ,  ( x F y ) >.
) `  <. ( G `
 v ) ,  ( 2nd `  ( R `  v )
) >. )  =  <. ( ( G `  v
)  +  1 ) ,  ( ( G `
 v ) F ( 2nd `  ( R `  v )
) ) >.
6142, 60syl6eq 2435 . . . . 5  |-  ( ( R `  v )  =  <. ( G `  v ) ,  ( 2nd `  ( R `
 v ) )
>.  ->  ( ( x  e.  _V ,  y  e.  _V  |->  <. (
x  +  1 ) ,  ( x F y ) >. ) `  ( R `  v
) )  =  <. ( ( G `  v
)  +  1 ) ,  ( ( G `
 v ) F ( 2nd `  ( R `  v )
) ) >. )
6241, 61sylan9eq 2439 . . . 4  |-  ( ( v  e.  om  /\  ( R `  v )  =  <. ( G `  v ) ,  ( 2nd `  ( R `
 v ) )
>. )  ->  ( R `
 suc  v )  =  <. ( ( G `
 v )  +  1 ) ,  ( ( G `  v
) F ( 2nd `  ( R `  v
) ) ) >.
)
6327, 28om2uzsuci 11215 . . . . . 6  |-  ( v  e.  om  ->  ( G `  suc  v )  =  ( ( G `
 v )  +  1 ) )
6463adantr 452 . . . . 5  |-  ( ( v  e.  om  /\  ( R `  v )  =  <. ( G `  v ) ,  ( 2nd `  ( R `
 v ) )
>. )  ->  ( G `
 suc  v )  =  ( ( G `
 v )  +  1 ) )
6562fveq2d 5672 . . . . . 6  |-  ( ( v  e.  om  /\  ( R `  v )  =  <. ( G `  v ) ,  ( 2nd `  ( R `
 v ) )
>. )  ->  ( 2nd `  ( R `  suc  v ) )  =  ( 2nd `  <. ( ( G `  v
)  +  1 ) ,  ( ( G `
 v ) F ( 2nd `  ( R `  v )
) ) >. )
)
66 ovex 6045 . . . . . . 7  |-  ( ( G `  v )  +  1 )  e. 
_V
67 ovex 6045 . . . . . . 7  |-  ( ( G `  v ) F ( 2nd `  ( R `  v )
) )  e.  _V
6866, 67op2nd 6295 . . . . . 6  |-  ( 2nd `  <. ( ( G `
 v )  +  1 ) ,  ( ( G `  v
) F ( 2nd `  ( R `  v
) ) ) >.
)  =  ( ( G `  v ) F ( 2nd `  ( R `  v )
) )
6965, 68syl6eq 2435 . . . . 5  |-  ( ( v  e.  om  /\  ( R `  v )  =  <. ( G `  v ) ,  ( 2nd `  ( R `
 v ) )
>. )  ->  ( 2nd `  ( R `  suc  v ) )  =  ( ( G `  v ) F ( 2nd `  ( R `
 v ) ) ) )
7064, 69opeq12d 3934 . . . 4  |-  ( ( v  e.  om  /\  ( R `  v )  =  <. ( G `  v ) ,  ( 2nd `  ( R `
 v ) )
>. )  ->  <. ( G `  suc  v ) ,  ( 2nd `  ( R `  suc  v ) ) >.  =  <. ( ( G `  v
)  +  1 ) ,  ( ( G `
 v ) F ( 2nd `  ( R `  v )
) ) >. )
7162, 70eqtr4d 2422 . . 3  |-  ( ( v  e.  om  /\  ( R `  v )  =  <. ( G `  v ) ,  ( 2nd `  ( R `
 v ) )
>. )  ->  ( R `
 suc  v )  =  <. ( G `  suc  v ) ,  ( 2nd `  ( R `
 suc  v )
) >. )
7271ex 424 . 2  |-  ( v  e.  om  ->  (
( R `  v
)  =  <. ( G `  v ) ,  ( 2nd `  ( R `  v )
) >.  ->  ( R `  suc  v )  = 
<. ( G `  suc  v ) ,  ( 2nd `  ( R `
 suc  v )
) >. ) )
735, 10, 15, 20, 36, 72finds 4811 1  |-  ( B  e.  om  ->  ( R `  B )  =  <. ( G `  B ) ,  ( 2nd `  ( R `
 B ) )
>. )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359    = wceq 1649    e. wcel 1717   _Vcvv 2899   (/)c0 3571   <.cop 3760    e. cmpt 4207   suc csuc 4524   omcom 4785    |` cres 4820   ` cfv 5394  (class class class)co 6020    e. cmpt2 6022   2ndc2nd 6287   reccrdg 6603   1c1 8924    + caddc 8926   ZZcz 10214
This theorem is referenced by:  uzrdglem  11224  uzrdgfni  11225  uzrdgsuci  11227
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-13 1719  ax-14 1721  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2368  ax-sep 4271  ax-nul 4279  ax-pow 4318  ax-pr 4344  ax-un 4641
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2242  df-mo 2243  df-clab 2374  df-cleq 2380  df-clel 2383  df-nfc 2512  df-ne 2552  df-ral 2654  df-rex 2655  df-reu 2656  df-rab 2658  df-v 2901  df-sbc 3105  df-csb 3195  df-dif 3266  df-un 3268  df-in 3270  df-ss 3277  df-pss 3279  df-nul 3572  df-if 3683  df-pw 3744  df-sn 3763  df-pr 3764  df-tp 3765  df-op 3766  df-uni 3958  df-iun 4037  df-br 4154  df-opab 4208  df-mpt 4209  df-tr 4244  df-eprel 4435  df-id 4439  df-po 4444  df-so 4445  df-fr 4482  df-we 4484  df-ord 4525  df-on 4526  df-lim 4527  df-suc 4528  df-om 4786  df-xp 4824  df-rel 4825  df-cnv 4826  df-co 4827  df-dm 4828  df-rn 4829  df-res 4830  df-ima 4831  df-iota 5358  df-fun 5396  df-fn 5397  df-f 5398  df-f1 5399  df-fo 5400  df-f1o 5401  df-fv 5402  df-ov 6023  df-oprab 6024  df-mpt2 6025  df-2nd 6289  df-recs 6569  df-rdg 6604
  Copyright terms: Public domain W3C validator