MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  omcan Structured version   Unicode version

Theorem omcan 6804
Description: Left cancellation law for ordinal multiplication. Proposition 8.20 of [TakeutiZaring] p. 63 and its converse. (Contributed by NM, 14-Dec-2004.)
Assertion
Ref Expression
omcan  |-  ( ( ( A  e.  On  /\  B  e.  On  /\  C  e.  On )  /\  (/)  e.  A )  ->  ( ( A  .o  B )  =  ( A  .o  C
)  <->  B  =  C
) )

Proof of Theorem omcan
StepHypRef Expression
1 omordi 6801 . . . . . . . . 9  |-  ( ( ( C  e.  On  /\  A  e.  On )  /\  (/)  e.  A )  ->  ( B  e.  C  ->  ( A  .o  B )  e.  ( A  .o  C ) ) )
21ex 424 . . . . . . . 8  |-  ( ( C  e.  On  /\  A  e.  On )  ->  ( (/)  e.  A  ->  ( B  e.  C  ->  ( A  .o  B
)  e.  ( A  .o  C ) ) ) )
32ancoms 440 . . . . . . 7  |-  ( ( A  e.  On  /\  C  e.  On )  ->  ( (/)  e.  A  ->  ( B  e.  C  ->  ( A  .o  B
)  e.  ( A  .o  C ) ) ) )
433adant2 976 . . . . . 6  |-  ( ( A  e.  On  /\  B  e.  On  /\  C  e.  On )  ->  ( (/) 
e.  A  ->  ( B  e.  C  ->  ( A  .o  B )  e.  ( A  .o  C ) ) ) )
54imp 419 . . . . 5  |-  ( ( ( A  e.  On  /\  B  e.  On  /\  C  e.  On )  /\  (/)  e.  A )  ->  ( B  e.  C  ->  ( A  .o  B )  e.  ( A  .o  C ) ) )
6 omordi 6801 . . . . . . . . 9  |-  ( ( ( B  e.  On  /\  A  e.  On )  /\  (/)  e.  A )  ->  ( C  e.  B  ->  ( A  .o  C )  e.  ( A  .o  B ) ) )
76ex 424 . . . . . . . 8  |-  ( ( B  e.  On  /\  A  e.  On )  ->  ( (/)  e.  A  ->  ( C  e.  B  ->  ( A  .o  C
)  e.  ( A  .o  B ) ) ) )
87ancoms 440 . . . . . . 7  |-  ( ( A  e.  On  /\  B  e.  On )  ->  ( (/)  e.  A  ->  ( C  e.  B  ->  ( A  .o  C
)  e.  ( A  .o  B ) ) ) )
983adant3 977 . . . . . 6  |-  ( ( A  e.  On  /\  B  e.  On  /\  C  e.  On )  ->  ( (/) 
e.  A  ->  ( C  e.  B  ->  ( A  .o  C )  e.  ( A  .o  B ) ) ) )
109imp 419 . . . . 5  |-  ( ( ( A  e.  On  /\  B  e.  On  /\  C  e.  On )  /\  (/)  e.  A )  ->  ( C  e.  B  ->  ( A  .o  C )  e.  ( A  .o  B ) ) )
115, 10orim12d 812 . . . 4  |-  ( ( ( A  e.  On  /\  B  e.  On  /\  C  e.  On )  /\  (/)  e.  A )  ->  ( ( B  e.  C  \/  C  e.  B )  ->  (
( A  .o  B
)  e.  ( A  .o  C )  \/  ( A  .o  C
)  e.  ( A  .o  B ) ) ) )
1211con3d 127 . . 3  |-  ( ( ( A  e.  On  /\  B  e.  On  /\  C  e.  On )  /\  (/)  e.  A )  ->  ( -.  (
( A  .o  B
)  e.  ( A  .o  C )  \/  ( A  .o  C
)  e.  ( A  .o  B ) )  ->  -.  ( B  e.  C  \/  C  e.  B ) ) )
13 omcl 6772 . . . . . . 7  |-  ( ( A  e.  On  /\  B  e.  On )  ->  ( A  .o  B
)  e.  On )
14 eloni 4583 . . . . . . 7  |-  ( ( A  .o  B )  e.  On  ->  Ord  ( A  .o  B
) )
1513, 14syl 16 . . . . . 6  |-  ( ( A  e.  On  /\  B  e.  On )  ->  Ord  ( A  .o  B ) )
16 omcl 6772 . . . . . . 7  |-  ( ( A  e.  On  /\  C  e.  On )  ->  ( A  .o  C
)  e.  On )
17 eloni 4583 . . . . . . 7  |-  ( ( A  .o  C )  e.  On  ->  Ord  ( A  .o  C
) )
1816, 17syl 16 . . . . . 6  |-  ( ( A  e.  On  /\  C  e.  On )  ->  Ord  ( A  .o  C ) )
19 ordtri3 4609 . . . . . 6  |-  ( ( Ord  ( A  .o  B )  /\  Ord  ( A  .o  C
) )  ->  (
( A  .o  B
)  =  ( A  .o  C )  <->  -.  (
( A  .o  B
)  e.  ( A  .o  C )  \/  ( A  .o  C
)  e.  ( A  .o  B ) ) ) )
2015, 18, 19syl2an 464 . . . . 5  |-  ( ( ( A  e.  On  /\  B  e.  On )  /\  ( A  e.  On  /\  C  e.  On ) )  -> 
( ( A  .o  B )  =  ( A  .o  C )  <->  -.  ( ( A  .o  B )  e.  ( A  .o  C )  \/  ( A  .o  C )  e.  ( A  .o  B ) ) ) )
21203impdi 1239 . . . 4  |-  ( ( A  e.  On  /\  B  e.  On  /\  C  e.  On )  ->  (
( A  .o  B
)  =  ( A  .o  C )  <->  -.  (
( A  .o  B
)  e.  ( A  .o  C )  \/  ( A  .o  C
)  e.  ( A  .o  B ) ) ) )
2221adantr 452 . . 3  |-  ( ( ( A  e.  On  /\  B  e.  On  /\  C  e.  On )  /\  (/)  e.  A )  ->  ( ( A  .o  B )  =  ( A  .o  C
)  <->  -.  ( ( A  .o  B )  e.  ( A  .o  C
)  \/  ( A  .o  C )  e.  ( A  .o  B
) ) ) )
23 eloni 4583 . . . . . 6  |-  ( B  e.  On  ->  Ord  B )
24 eloni 4583 . . . . . 6  |-  ( C  e.  On  ->  Ord  C )
25 ordtri3 4609 . . . . . 6  |-  ( ( Ord  B  /\  Ord  C )  ->  ( B  =  C  <->  -.  ( B  e.  C  \/  C  e.  B ) ) )
2623, 24, 25syl2an 464 . . . . 5  |-  ( ( B  e.  On  /\  C  e.  On )  ->  ( B  =  C  <->  -.  ( B  e.  C  \/  C  e.  B
) ) )
27263adant1 975 . . . 4  |-  ( ( A  e.  On  /\  B  e.  On  /\  C  e.  On )  ->  ( B  =  C  <->  -.  ( B  e.  C  \/  C  e.  B )
) )
2827adantr 452 . . 3  |-  ( ( ( A  e.  On  /\  B  e.  On  /\  C  e.  On )  /\  (/)  e.  A )  ->  ( B  =  C  <->  -.  ( B  e.  C  \/  C  e.  B ) ) )
2912, 22, 283imtr4d 260 . 2  |-  ( ( ( A  e.  On  /\  B  e.  On  /\  C  e.  On )  /\  (/)  e.  A )  ->  ( ( A  .o  B )  =  ( A  .o  C
)  ->  B  =  C ) )
30 oveq2 6081 . 2  |-  ( B  =  C  ->  ( A  .o  B )  =  ( A  .o  C
) )
3129, 30impbid1 195 1  |-  ( ( ( A  e.  On  /\  B  e.  On  /\  C  e.  On )  /\  (/)  e.  A )  ->  ( ( A  .o  B )  =  ( A  .o  C
)  <->  B  =  C
) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 177    \/ wo 358    /\ wa 359    /\ w3a 936    = wceq 1652    e. wcel 1725   (/)c0 3620   Ord word 4572   Oncon0 4573  (class class class)co 6073    .o comu 6714
This theorem is referenced by:  omword  6805  fin1a2lem4  8275
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-rep 4312  ax-sep 4322  ax-nul 4330  ax-pow 4369  ax-pr 4395  ax-un 4693
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-ral 2702  df-rex 2703  df-reu 2704  df-rab 2706  df-v 2950  df-sbc 3154  df-csb 3244  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-pss 3328  df-nul 3621  df-if 3732  df-pw 3793  df-sn 3812  df-pr 3813  df-tp 3814  df-op 3815  df-uni 4008  df-iun 4087  df-br 4205  df-opab 4259  df-mpt 4260  df-tr 4295  df-eprel 4486  df-id 4490  df-po 4495  df-so 4496  df-fr 4533  df-we 4535  df-ord 4576  df-on 4577  df-lim 4578  df-suc 4579  df-om 4838  df-xp 4876  df-rel 4877  df-cnv 4878  df-co 4879  df-dm 4880  df-rn 4881  df-res 4882  df-ima 4883  df-iota 5410  df-fun 5448  df-fn 5449  df-f 5450  df-f1 5451  df-fo 5452  df-f1o 5453  df-fv 5454  df-ov 6076  df-oprab 6077  df-mpt2 6078  df-recs 6625  df-rdg 6660  df-oadd 6720  df-omul 6721
  Copyright terms: Public domain W3C validator