MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  omeu Structured version   Unicode version

Theorem omeu 6830
Description: The division algorithm for ordinal multiplication. (Contributed by Mario Carneiro, 28-Feb-2013.)
Assertion
Ref Expression
omeu  |-  ( ( A  e.  On  /\  B  e.  On  /\  A  =/=  (/) )  ->  E! z E. x  e.  On  E. y  e.  A  ( z  =  <. x ,  y >.  /\  (
( A  .o  x
)  +o  y )  =  B ) )
Distinct variable groups:    x, A, y, z    x, B, y, z

Proof of Theorem omeu
Dummy variables  r 
s  t are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 omeulem1 6827 . . 3  |-  ( ( A  e.  On  /\  B  e.  On  /\  A  =/=  (/) )  ->  E. x  e.  On  E. y  e.  A  ( ( A  .o  x )  +o  y )  =  B )
2 opex 4429 . . . . . . . . 9  |-  <. x ,  y >.  e.  _V
32isseti 2964 . . . . . . . 8  |-  E. z 
z  =  <. x ,  y >.
4 19.41v 1925 . . . . . . . 8  |-  ( E. z ( z  = 
<. x ,  y >.  /\  ( ( A  .o  x )  +o  y
)  =  B )  <-> 
( E. z  z  =  <. x ,  y
>.  /\  ( ( A  .o  x )  +o  y )  =  B ) )
53, 4mpbiran 886 . . . . . . 7  |-  ( E. z ( z  = 
<. x ,  y >.  /\  ( ( A  .o  x )  +o  y
)  =  B )  <-> 
( ( A  .o  x )  +o  y
)  =  B )
65rexbii 2732 . . . . . 6  |-  ( E. y  e.  A  E. z ( z  = 
<. x ,  y >.  /\  ( ( A  .o  x )  +o  y
)  =  B )  <->  E. y  e.  A  ( ( A  .o  x )  +o  y
)  =  B )
7 rexcom4 2977 . . . . . 6  |-  ( E. y  e.  A  E. z ( z  = 
<. x ,  y >.  /\  ( ( A  .o  x )  +o  y
)  =  B )  <->  E. z E. y  e.  A  ( z  = 
<. x ,  y >.  /\  ( ( A  .o  x )  +o  y
)  =  B ) )
86, 7bitr3i 244 . . . . 5  |-  ( E. y  e.  A  ( ( A  .o  x
)  +o  y )  =  B  <->  E. z E. y  e.  A  ( z  =  <. x ,  y >.  /\  (
( A  .o  x
)  +o  y )  =  B ) )
98rexbii 2732 . . . 4  |-  ( E. x  e.  On  E. y  e.  A  (
( A  .o  x
)  +o  y )  =  B  <->  E. x  e.  On  E. z E. y  e.  A  ( z  =  <. x ,  y >.  /\  (
( A  .o  x
)  +o  y )  =  B ) )
10 rexcom4 2977 . . . 4  |-  ( E. x  e.  On  E. z E. y  e.  A  ( z  =  <. x ,  y >.  /\  (
( A  .o  x
)  +o  y )  =  B )  <->  E. z E. x  e.  On  E. y  e.  A  ( z  =  <. x ,  y >.  /\  (
( A  .o  x
)  +o  y )  =  B ) )
119, 10bitri 242 . . 3  |-  ( E. x  e.  On  E. y  e.  A  (
( A  .o  x
)  +o  y )  =  B  <->  E. z E. x  e.  On  E. y  e.  A  ( z  =  <. x ,  y >.  /\  (
( A  .o  x
)  +o  y )  =  B ) )
121, 11sylib 190 . 2  |-  ( ( A  e.  On  /\  B  e.  On  /\  A  =/=  (/) )  ->  E. z E. x  e.  On  E. y  e.  A  ( z  =  <. x ,  y >.  /\  (
( A  .o  x
)  +o  y )  =  B ) )
13 simp2rl 1027 . . . . . . . . . . 11  |-  ( ( ( A  e.  On  /\  B  e.  On  /\  A  =/=  (/) )  /\  (
( x  e.  On  /\  y  e.  A )  /\  ( z  = 
<. x ,  y >.  /\  ( ( A  .o  x )  +o  y
)  =  B ) )  /\  ( ( r  e.  On  /\  s  e.  A )  /\  ( t  =  <. r ,  s >.  /\  (
( A  .o  r
)  +o  s )  =  B ) ) )  ->  z  =  <. x ,  y >.
)
14 simp3rl 1031 . . . . . . . . . . . 12  |-  ( ( ( A  e.  On  /\  B  e.  On  /\  A  =/=  (/) )  /\  (
( x  e.  On  /\  y  e.  A )  /\  ( z  = 
<. x ,  y >.  /\  ( ( A  .o  x )  +o  y
)  =  B ) )  /\  ( ( r  e.  On  /\  s  e.  A )  /\  ( t  =  <. r ,  s >.  /\  (
( A  .o  r
)  +o  s )  =  B ) ) )  ->  t  =  <. r ,  s >.
)
15 simp2rr 1028 . . . . . . . . . . . . . . 15  |-  ( ( ( A  e.  On  /\  B  e.  On  /\  A  =/=  (/) )  /\  (
( x  e.  On  /\  y  e.  A )  /\  ( z  = 
<. x ,  y >.  /\  ( ( A  .o  x )  +o  y
)  =  B ) )  /\  ( ( r  e.  On  /\  s  e.  A )  /\  ( t  =  <. r ,  s >.  /\  (
( A  .o  r
)  +o  s )  =  B ) ) )  ->  ( ( A  .o  x )  +o  y )  =  B )
16 simp3rr 1032 . . . . . . . . . . . . . . 15  |-  ( ( ( A  e.  On  /\  B  e.  On  /\  A  =/=  (/) )  /\  (
( x  e.  On  /\  y  e.  A )  /\  ( z  = 
<. x ,  y >.  /\  ( ( A  .o  x )  +o  y
)  =  B ) )  /\  ( ( r  e.  On  /\  s  e.  A )  /\  ( t  =  <. r ,  s >.  /\  (
( A  .o  r
)  +o  s )  =  B ) ) )  ->  ( ( A  .o  r )  +o  s )  =  B )
1715, 16eqtr4d 2473 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  On  /\  B  e.  On  /\  A  =/=  (/) )  /\  (
( x  e.  On  /\  y  e.  A )  /\  ( z  = 
<. x ,  y >.  /\  ( ( A  .o  x )  +o  y
)  =  B ) )  /\  ( ( r  e.  On  /\  s  e.  A )  /\  ( t  =  <. r ,  s >.  /\  (
( A  .o  r
)  +o  s )  =  B ) ) )  ->  ( ( A  .o  x )  +o  y )  =  ( ( A  .o  r
)  +o  s ) )
18 simp11 988 . . . . . . . . . . . . . . 15  |-  ( ( ( A  e.  On  /\  B  e.  On  /\  A  =/=  (/) )  /\  (
( x  e.  On  /\  y  e.  A )  /\  ( z  = 
<. x ,  y >.  /\  ( ( A  .o  x )  +o  y
)  =  B ) )  /\  ( ( r  e.  On  /\  s  e.  A )  /\  ( t  =  <. r ,  s >.  /\  (
( A  .o  r
)  +o  s )  =  B ) ) )  ->  A  e.  On )
19 simp13 990 . . . . . . . . . . . . . . 15  |-  ( ( ( A  e.  On  /\  B  e.  On  /\  A  =/=  (/) )  /\  (
( x  e.  On  /\  y  e.  A )  /\  ( z  = 
<. x ,  y >.  /\  ( ( A  .o  x )  +o  y
)  =  B ) )  /\  ( ( r  e.  On  /\  s  e.  A )  /\  ( t  =  <. r ,  s >.  /\  (
( A  .o  r
)  +o  s )  =  B ) ) )  ->  A  =/=  (/) )
20 simp2ll 1025 . . . . . . . . . . . . . . 15  |-  ( ( ( A  e.  On  /\  B  e.  On  /\  A  =/=  (/) )  /\  (
( x  e.  On  /\  y  e.  A )  /\  ( z  = 
<. x ,  y >.  /\  ( ( A  .o  x )  +o  y
)  =  B ) )  /\  ( ( r  e.  On  /\  s  e.  A )  /\  ( t  =  <. r ,  s >.  /\  (
( A  .o  r
)  +o  s )  =  B ) ) )  ->  x  e.  On )
21 simp2lr 1026 . . . . . . . . . . . . . . 15  |-  ( ( ( A  e.  On  /\  B  e.  On  /\  A  =/=  (/) )  /\  (
( x  e.  On  /\  y  e.  A )  /\  ( z  = 
<. x ,  y >.  /\  ( ( A  .o  x )  +o  y
)  =  B ) )  /\  ( ( r  e.  On  /\  s  e.  A )  /\  ( t  =  <. r ,  s >.  /\  (
( A  .o  r
)  +o  s )  =  B ) ) )  ->  y  e.  A )
22 simp3ll 1029 . . . . . . . . . . . . . . 15  |-  ( ( ( A  e.  On  /\  B  e.  On  /\  A  =/=  (/) )  /\  (
( x  e.  On  /\  y  e.  A )  /\  ( z  = 
<. x ,  y >.  /\  ( ( A  .o  x )  +o  y
)  =  B ) )  /\  ( ( r  e.  On  /\  s  e.  A )  /\  ( t  =  <. r ,  s >.  /\  (
( A  .o  r
)  +o  s )  =  B ) ) )  ->  r  e.  On )
23 simp3lr 1030 . . . . . . . . . . . . . . 15  |-  ( ( ( A  e.  On  /\  B  e.  On  /\  A  =/=  (/) )  /\  (
( x  e.  On  /\  y  e.  A )  /\  ( z  = 
<. x ,  y >.  /\  ( ( A  .o  x )  +o  y
)  =  B ) )  /\  ( ( r  e.  On  /\  s  e.  A )  /\  ( t  =  <. r ,  s >.  /\  (
( A  .o  r
)  +o  s )  =  B ) ) )  ->  s  e.  A )
24 omopth2 6829 . . . . . . . . . . . . . . 15  |-  ( ( ( A  e.  On  /\  A  =/=  (/) )  /\  ( x  e.  On  /\  y  e.  A )  /\  ( r  e.  On  /\  s  e.  A ) )  -> 
( ( ( A  .o  x )  +o  y )  =  ( ( A  .o  r
)  +o  s )  <-> 
( x  =  r  /\  y  =  s ) ) )
2518, 19, 20, 21, 22, 23, 24syl222anc 1201 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  On  /\  B  e.  On  /\  A  =/=  (/) )  /\  (
( x  e.  On  /\  y  e.  A )  /\  ( z  = 
<. x ,  y >.  /\  ( ( A  .o  x )  +o  y
)  =  B ) )  /\  ( ( r  e.  On  /\  s  e.  A )  /\  ( t  =  <. r ,  s >.  /\  (
( A  .o  r
)  +o  s )  =  B ) ) )  ->  ( (
( A  .o  x
)  +o  y )  =  ( ( A  .o  r )  +o  s )  <->  ( x  =  r  /\  y  =  s ) ) )
2617, 25mpbid 203 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  On  /\  B  e.  On  /\  A  =/=  (/) )  /\  (
( x  e.  On  /\  y  e.  A )  /\  ( z  = 
<. x ,  y >.  /\  ( ( A  .o  x )  +o  y
)  =  B ) )  /\  ( ( r  e.  On  /\  s  e.  A )  /\  ( t  =  <. r ,  s >.  /\  (
( A  .o  r
)  +o  s )  =  B ) ) )  ->  ( x  =  r  /\  y  =  s ) )
27 opeq12 3988 . . . . . . . . . . . . 13  |-  ( ( x  =  r  /\  y  =  s )  -> 
<. x ,  y >.  =  <. r ,  s
>. )
2826, 27syl 16 . . . . . . . . . . . 12  |-  ( ( ( A  e.  On  /\  B  e.  On  /\  A  =/=  (/) )  /\  (
( x  e.  On  /\  y  e.  A )  /\  ( z  = 
<. x ,  y >.  /\  ( ( A  .o  x )  +o  y
)  =  B ) )  /\  ( ( r  e.  On  /\  s  e.  A )  /\  ( t  =  <. r ,  s >.  /\  (
( A  .o  r
)  +o  s )  =  B ) ) )  ->  <. x ,  y >.  =  <. r ,  s >. )
2914, 28eqtr4d 2473 . . . . . . . . . . 11  |-  ( ( ( A  e.  On  /\  B  e.  On  /\  A  =/=  (/) )  /\  (
( x  e.  On  /\  y  e.  A )  /\  ( z  = 
<. x ,  y >.  /\  ( ( A  .o  x )  +o  y
)  =  B ) )  /\  ( ( r  e.  On  /\  s  e.  A )  /\  ( t  =  <. r ,  s >.  /\  (
( A  .o  r
)  +o  s )  =  B ) ) )  ->  t  =  <. x ,  y >.
)
3013, 29eqtr4d 2473 . . . . . . . . . 10  |-  ( ( ( A  e.  On  /\  B  e.  On  /\  A  =/=  (/) )  /\  (
( x  e.  On  /\  y  e.  A )  /\  ( z  = 
<. x ,  y >.  /\  ( ( A  .o  x )  +o  y
)  =  B ) )  /\  ( ( r  e.  On  /\  s  e.  A )  /\  ( t  =  <. r ,  s >.  /\  (
( A  .o  r
)  +o  s )  =  B ) ) )  ->  z  =  t )
31303expia 1156 . . . . . . . . 9  |-  ( ( ( A  e.  On  /\  B  e.  On  /\  A  =/=  (/) )  /\  (
( x  e.  On  /\  y  e.  A )  /\  ( z  = 
<. x ,  y >.  /\  ( ( A  .o  x )  +o  y
)  =  B ) ) )  ->  (
( ( r  e.  On  /\  s  e.  A )  /\  (
t  =  <. r ,  s >.  /\  (
( A  .o  r
)  +o  s )  =  B ) )  ->  z  =  t ) )
3231exp4b 592 . . . . . . . 8  |-  ( ( A  e.  On  /\  B  e.  On  /\  A  =/=  (/) )  ->  (
( ( x  e.  On  /\  y  e.  A )  /\  (
z  =  <. x ,  y >.  /\  (
( A  .o  x
)  +o  y )  =  B ) )  ->  ( ( r  e.  On  /\  s  e.  A )  ->  (
( t  =  <. r ,  s >.  /\  (
( A  .o  r
)  +o  s )  =  B )  -> 
z  =  t ) ) ) )
3332exp3a 427 . . . . . . 7  |-  ( ( A  e.  On  /\  B  e.  On  /\  A  =/=  (/) )  ->  (
( x  e.  On  /\  y  e.  A )  ->  ( ( z  =  <. x ,  y
>.  /\  ( ( A  .o  x )  +o  y )  =  B )  ->  ( (
r  e.  On  /\  s  e.  A )  ->  ( ( t  = 
<. r ,  s >.  /\  ( ( A  .o  r )  +o  s
)  =  B )  ->  z  =  t ) ) ) ) )
3433rexlimdvv 2838 . . . . . 6  |-  ( ( A  e.  On  /\  B  e.  On  /\  A  =/=  (/) )  ->  ( E. x  e.  On  E. y  e.  A  ( z  =  <. x ,  y >.  /\  (
( A  .o  x
)  +o  y )  =  B )  -> 
( ( r  e.  On  /\  s  e.  A )  ->  (
( t  =  <. r ,  s >.  /\  (
( A  .o  r
)  +o  s )  =  B )  -> 
z  =  t ) ) ) )
3534imp 420 . . . . 5  |-  ( ( ( A  e.  On  /\  B  e.  On  /\  A  =/=  (/) )  /\  E. x  e.  On  E. y  e.  A  ( z  =  <. x ,  y
>.  /\  ( ( A  .o  x )  +o  y )  =  B ) )  ->  (
( r  e.  On  /\  s  e.  A )  ->  ( ( t  =  <. r ,  s
>.  /\  ( ( A  .o  r )  +o  s )  =  B )  ->  z  =  t ) ) )
3635rexlimdvv 2838 . . . 4  |-  ( ( ( A  e.  On  /\  B  e.  On  /\  A  =/=  (/) )  /\  E. x  e.  On  E. y  e.  A  ( z  =  <. x ,  y
>.  /\  ( ( A  .o  x )  +o  y )  =  B ) )  ->  ( E. r  e.  On  E. s  e.  A  ( t  =  <. r ,  s >.  /\  (
( A  .o  r
)  +o  s )  =  B )  -> 
z  =  t ) )
3736expimpd 588 . . 3  |-  ( ( A  e.  On  /\  B  e.  On  /\  A  =/=  (/) )  ->  (
( E. x  e.  On  E. y  e.  A  ( z  = 
<. x ,  y >.  /\  ( ( A  .o  x )  +o  y
)  =  B )  /\  E. r  e.  On  E. s  e.  A  ( t  = 
<. r ,  s >.  /\  ( ( A  .o  r )  +o  s
)  =  B ) )  ->  z  =  t ) )
3837alrimivv 1643 . 2  |-  ( ( A  e.  On  /\  B  e.  On  /\  A  =/=  (/) )  ->  A. z A. t ( ( E. x  e.  On  E. y  e.  A  (
z  =  <. x ,  y >.  /\  (
( A  .o  x
)  +o  y )  =  B )  /\  E. r  e.  On  E. s  e.  A  (
t  =  <. r ,  s >.  /\  (
( A  .o  r
)  +o  s )  =  B ) )  ->  z  =  t ) )
39 opeq1 3986 . . . . . . 7  |-  ( x  =  r  ->  <. x ,  y >.  =  <. r ,  y >. )
4039eqeq2d 2449 . . . . . 6  |-  ( x  =  r  ->  (
z  =  <. x ,  y >.  <->  z  =  <. r ,  y >.
) )
41 oveq2 6091 . . . . . . . 8  |-  ( x  =  r  ->  ( A  .o  x )  =  ( A  .o  r
) )
4241oveq1d 6098 . . . . . . 7  |-  ( x  =  r  ->  (
( A  .o  x
)  +o  y )  =  ( ( A  .o  r )  +o  y ) )
4342eqeq1d 2446 . . . . . 6  |-  ( x  =  r  ->  (
( ( A  .o  x )  +o  y
)  =  B  <->  ( ( A  .o  r )  +o  y )  =  B ) )
4440, 43anbi12d 693 . . . . 5  |-  ( x  =  r  ->  (
( z  =  <. x ,  y >.  /\  (
( A  .o  x
)  +o  y )  =  B )  <->  ( z  =  <. r ,  y
>.  /\  ( ( A  .o  r )  +o  y )  =  B ) ) )
45 opeq2 3987 . . . . . . 7  |-  ( y  =  s  ->  <. r ,  y >.  =  <. r ,  s >. )
4645eqeq2d 2449 . . . . . 6  |-  ( y  =  s  ->  (
z  =  <. r ,  y >.  <->  z  =  <. r ,  s >.
) )
47 oveq2 6091 . . . . . . 7  |-  ( y  =  s  ->  (
( A  .o  r
)  +o  y )  =  ( ( A  .o  r )  +o  s ) )
4847eqeq1d 2446 . . . . . 6  |-  ( y  =  s  ->  (
( ( A  .o  r )  +o  y
)  =  B  <->  ( ( A  .o  r )  +o  s )  =  B ) )
4946, 48anbi12d 693 . . . . 5  |-  ( y  =  s  ->  (
( z  =  <. r ,  y >.  /\  (
( A  .o  r
)  +o  y )  =  B )  <->  ( z  =  <. r ,  s
>.  /\  ( ( A  .o  r )  +o  s )  =  B ) ) )
5044, 49cbvrex2v 2943 . . . 4  |-  ( E. x  e.  On  E. y  e.  A  (
z  =  <. x ,  y >.  /\  (
( A  .o  x
)  +o  y )  =  B )  <->  E. r  e.  On  E. s  e.  A  ( z  = 
<. r ,  s >.  /\  ( ( A  .o  r )  +o  s
)  =  B ) )
51 eqeq1 2444 . . . . . 6  |-  ( z  =  t  ->  (
z  =  <. r ,  s >.  <->  t  =  <. r ,  s >.
) )
5251anbi1d 687 . . . . 5  |-  ( z  =  t  ->  (
( z  =  <. r ,  s >.  /\  (
( A  .o  r
)  +o  s )  =  B )  <->  ( t  =  <. r ,  s
>.  /\  ( ( A  .o  r )  +o  s )  =  B ) ) )
53522rexbidv 2750 . . . 4  |-  ( z  =  t  ->  ( E. r  e.  On  E. s  e.  A  ( z  =  <. r ,  s >.  /\  (
( A  .o  r
)  +o  s )  =  B )  <->  E. r  e.  On  E. s  e.  A  ( t  = 
<. r ,  s >.  /\  ( ( A  .o  r )  +o  s
)  =  B ) ) )
5450, 53syl5bb 250 . . 3  |-  ( z  =  t  ->  ( E. x  e.  On  E. y  e.  A  ( z  =  <. x ,  y >.  /\  (
( A  .o  x
)  +o  y )  =  B )  <->  E. r  e.  On  E. s  e.  A  ( t  = 
<. r ,  s >.  /\  ( ( A  .o  r )  +o  s
)  =  B ) ) )
5554eu4 2322 . 2  |-  ( E! z E. x  e.  On  E. y  e.  A  ( z  = 
<. x ,  y >.  /\  ( ( A  .o  x )  +o  y
)  =  B )  <-> 
( E. z E. x  e.  On  E. y  e.  A  (
z  =  <. x ,  y >.  /\  (
( A  .o  x
)  +o  y )  =  B )  /\  A. z A. t ( ( E. x  e.  On  E. y  e.  A  ( z  = 
<. x ,  y >.  /\  ( ( A  .o  x )  +o  y
)  =  B )  /\  E. r  e.  On  E. s  e.  A  ( t  = 
<. r ,  s >.  /\  ( ( A  .o  r )  +o  s
)  =  B ) )  ->  z  =  t ) ) )
5612, 38, 55sylanbrc 647 1  |-  ( ( A  e.  On  /\  B  e.  On  /\  A  =/=  (/) )  ->  E! z E. x  e.  On  E. y  e.  A  ( z  =  <. x ,  y >.  /\  (
( A  .o  x
)  +o  y )  =  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 178    /\ wa 360    /\ w3a 937   A.wal 1550   E.wex 1551    = wceq 1653    e. wcel 1726   E!weu 2283    =/= wne 2601   E.wrex 2708   (/)c0 3630   <.cop 3819   Oncon0 4583  (class class class)co 6083    +o coa 6723    .o comu 6724
This theorem is referenced by:  oeeui  6847  omxpenlem  7211
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-13 1728  ax-14 1730  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2419  ax-rep 4322  ax-sep 4332  ax-nul 4340  ax-pow 4379  ax-pr 4405  ax-un 4703
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 938  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2287  df-mo 2288  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-ral 2712  df-rex 2713  df-reu 2714  df-rmo 2715  df-rab 2716  df-v 2960  df-sbc 3164  df-csb 3254  df-dif 3325  df-un 3327  df-in 3329  df-ss 3336  df-pss 3338  df-nul 3631  df-if 3742  df-pw 3803  df-sn 3822  df-pr 3823  df-tp 3824  df-op 3825  df-uni 4018  df-int 4053  df-iun 4097  df-br 4215  df-opab 4269  df-mpt 4270  df-tr 4305  df-eprel 4496  df-id 4500  df-po 4505  df-so 4506  df-fr 4543  df-we 4545  df-ord 4586  df-on 4587  df-lim 4588  df-suc 4589  df-om 4848  df-xp 4886  df-rel 4887  df-cnv 4888  df-co 4889  df-dm 4890  df-rn 4891  df-res 4892  df-ima 4893  df-iota 5420  df-fun 5458  df-fn 5459  df-f 5460  df-f1 5461  df-fo 5462  df-f1o 5463  df-fv 5464  df-ov 6086  df-oprab 6087  df-mpt2 6088  df-1st 6351  df-2nd 6352  df-recs 6635  df-rdg 6670  df-1o 6726  df-oadd 6730  df-omul 6731
  Copyright terms: Public domain W3C validator