MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  omeulem1 Unicode version

Theorem omeulem1 6580
Description: Lemma for omeu 6583: existence part. (Contributed by Mario Carneiro, 28-Feb-2013.)
Assertion
Ref Expression
omeulem1  |-  ( ( A  e.  On  /\  B  e.  On  /\  A  =/=  (/) )  ->  E. x  e.  On  E. y  e.  A  ( ( A  .o  x )  +o  y )  =  B )
Distinct variable groups:    x, A, y    x, B, y

Proof of Theorem omeulem1
Dummy variables  w  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp2 956 . . 3  |-  ( ( A  e.  On  /\  B  e.  On  /\  A  =/=  (/) )  ->  B  e.  On )
2 sucelon 4608 . . . . . 6  |-  ( B  e.  On  <->  suc  B  e.  On )
31, 2sylib 188 . . . . 5  |-  ( ( A  e.  On  /\  B  e.  On  /\  A  =/=  (/) )  ->  suc  B  e.  On )
4 simp1 955 . . . . 5  |-  ( ( A  e.  On  /\  B  e.  On  /\  A  =/=  (/) )  ->  A  e.  On )
5 on0eln0 4447 . . . . . . 7  |-  ( A  e.  On  ->  ( (/) 
e.  A  <->  A  =/=  (/) ) )
65biimpar 471 . . . . . 6  |-  ( ( A  e.  On  /\  A  =/=  (/) )  ->  (/)  e.  A
)
763adant2 974 . . . . 5  |-  ( ( A  e.  On  /\  B  e.  On  /\  A  =/=  (/) )  ->  (/)  e.  A
)
8 omword2 6572 . . . . 5  |-  ( ( ( suc  B  e.  On  /\  A  e.  On )  /\  (/)  e.  A
)  ->  suc  B  C_  ( A  .o  suc  B
) )
93, 4, 7, 8syl21anc 1181 . . . 4  |-  ( ( A  e.  On  /\  B  e.  On  /\  A  =/=  (/) )  ->  suc  B 
C_  ( A  .o  suc  B ) )
10 sucidg 4470 . . . . 5  |-  ( B  e.  On  ->  B  e.  suc  B )
11 ssel 3174 . . . . 5  |-  ( suc 
B  C_  ( A  .o  suc  B )  -> 
( B  e.  suc  B  ->  B  e.  ( A  .o  suc  B
) ) )
1210, 11syl5 28 . . . 4  |-  ( suc 
B  C_  ( A  .o  suc  B )  -> 
( B  e.  On  ->  B  e.  ( A  .o  suc  B ) ) )
139, 1, 12sylc 56 . . 3  |-  ( ( A  e.  On  /\  B  e.  On  /\  A  =/=  (/) )  ->  B  e.  ( A  .o  suc  B ) )
14 suceq 4457 . . . . . 6  |-  ( x  =  B  ->  suc  x  =  suc  B )
1514oveq2d 5874 . . . . 5  |-  ( x  =  B  ->  ( A  .o  suc  x )  =  ( A  .o  suc  B ) )
1615eleq2d 2350 . . . 4  |-  ( x  =  B  ->  ( B  e.  ( A  .o  suc  x )  <->  B  e.  ( A  .o  suc  B
) ) )
1716rspcev 2884 . . 3  |-  ( ( B  e.  On  /\  B  e.  ( A  .o  suc  B ) )  ->  E. x  e.  On  B  e.  ( A  .o  suc  x ) )
181, 13, 17syl2anc 642 . 2  |-  ( ( A  e.  On  /\  B  e.  On  /\  A  =/=  (/) )  ->  E. x  e.  On  B  e.  ( A  .o  suc  x
) )
19 suceq 4457 . . . . . 6  |-  ( x  =  z  ->  suc  x  =  suc  z )
2019oveq2d 5874 . . . . 5  |-  ( x  =  z  ->  ( A  .o  suc  x )  =  ( A  .o  suc  z ) )
2120eleq2d 2350 . . . 4  |-  ( x  =  z  ->  ( B  e.  ( A  .o  suc  x )  <->  B  e.  ( A  .o  suc  z
) ) )
2221onminex 4598 . . 3  |-  ( E. x  e.  On  B  e.  ( A  .o  suc  x )  ->  E. x  e.  On  ( B  e.  ( A  .o  suc  x )  /\  A. z  e.  x  -.  B  e.  ( A  .o  suc  z ) ) )
23 vex 2791 . . . . . . . . . . . . . . 15  |-  x  e. 
_V
2423elon 4401 . . . . . . . . . . . . . 14  |-  ( x  e.  On  <->  Ord  x )
25 ordzsl 4636 . . . . . . . . . . . . . 14  |-  ( Ord  x  <->  ( x  =  (/)  \/  E. w  e.  On  x  =  suc  w  \/  Lim  x ) )
2624, 25bitri 240 . . . . . . . . . . . . 13  |-  ( x  e.  On  <->  ( x  =  (/)  \/  E. w  e.  On  x  =  suc  w  \/  Lim  x ) )
27 noel 3459 . . . . . . . . . . . . . . . 16  |-  -.  B  e.  (/)
28 oveq2 5866 . . . . . . . . . . . . . . . . . 18  |-  ( x  =  (/)  ->  ( A  .o  x )  =  ( A  .o  (/) ) )
29 om0x 6518 . . . . . . . . . . . . . . . . . 18  |-  ( A  .o  (/) )  =  (/)
3028, 29syl6eq 2331 . . . . . . . . . . . . . . . . 17  |-  ( x  =  (/)  ->  ( A  .o  x )  =  (/) )
3130eleq2d 2350 . . . . . . . . . . . . . . . 16  |-  ( x  =  (/)  ->  ( B  e.  ( A  .o  x )  <->  B  e.  (/) ) )
3227, 31mtbiri 294 . . . . . . . . . . . . . . 15  |-  ( x  =  (/)  ->  -.  B  e.  ( A  .o  x
) )
3332a1i 10 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  On  /\  B  e.  On  /\  A  =/=  (/) )  /\  A. z  e.  x  -.  B  e.  ( A  .o  suc  z ) )  ->  ( x  =  (/)  ->  -.  B  e.  ( A  .o  x
) ) )
34 simp3 957 . . . . . . . . . . . . . . . . 17  |-  ( ( ( A  e.  On  /\  B  e.  On  /\  A  =/=  (/) )  /\  A. z  e.  x  -.  B  e.  ( A  .o  suc  z )  /\  x  =  suc  w )  ->  x  =  suc  w )
35 simp2 956 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( A  e.  On  /\  B  e.  On  /\  A  =/=  (/) )  /\  A. z  e.  x  -.  B  e.  ( A  .o  suc  z )  /\  x  =  suc  w )  ->  A. z  e.  x  -.  B  e.  ( A  .o  suc  z ) )
36 raleq 2736 . . . . . . . . . . . . . . . . . . 19  |-  ( x  =  suc  w  -> 
( A. z  e.  x  -.  B  e.  ( A  .o  suc  z )  <->  A. z  e.  suc  w  -.  B  e.  ( A  .o  suc  z ) ) )
37 vex 2791 . . . . . . . . . . . . . . . . . . . . 21  |-  w  e. 
_V
3837sucid 4471 . . . . . . . . . . . . . . . . . . . 20  |-  w  e. 
suc  w
39 suceq 4457 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( z  =  w  ->  suc  z  =  suc  w )
4039oveq2d 5874 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( z  =  w  ->  ( A  .o  suc  z )  =  ( A  .o  suc  w ) )
4140eleq2d 2350 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( z  =  w  ->  ( B  e.  ( A  .o  suc  z )  <->  B  e.  ( A  .o  suc  w
) ) )
4241notbid 285 . . . . . . . . . . . . . . . . . . . . 21  |-  ( z  =  w  ->  ( -.  B  e.  ( A  .o  suc  z )  <->  -.  B  e.  ( A  .o  suc  w ) ) )
4342rspcv 2880 . . . . . . . . . . . . . . . . . . . 20  |-  ( w  e.  suc  w  -> 
( A. z  e. 
suc  w  -.  B  e.  ( A  .o  suc  z )  ->  -.  B  e.  ( A  .o  suc  w ) ) )
4438, 43ax-mp 8 . . . . . . . . . . . . . . . . . . 19  |-  ( A. z  e.  suc  w  -.  B  e.  ( A  .o  suc  z )  ->  -.  B  e.  ( A  .o  suc  w ) )
4536, 44syl6bi 219 . . . . . . . . . . . . . . . . . 18  |-  ( x  =  suc  w  -> 
( A. z  e.  x  -.  B  e.  ( A  .o  suc  z )  ->  -.  B  e.  ( A  .o  suc  w ) ) )
4634, 35, 45sylc 56 . . . . . . . . . . . . . . . . 17  |-  ( ( ( A  e.  On  /\  B  e.  On  /\  A  =/=  (/) )  /\  A. z  e.  x  -.  B  e.  ( A  .o  suc  z )  /\  x  =  suc  w )  ->  -.  B  e.  ( A  .o  suc  w
) )
47 oveq2 5866 . . . . . . . . . . . . . . . . . . . 20  |-  ( x  =  suc  w  -> 
( A  .o  x
)  =  ( A  .o  suc  w ) )
4847eleq2d 2350 . . . . . . . . . . . . . . . . . . 19  |-  ( x  =  suc  w  -> 
( B  e.  ( A  .o  x )  <-> 
B  e.  ( A  .o  suc  w ) ) )
4948notbid 285 . . . . . . . . . . . . . . . . . 18  |-  ( x  =  suc  w  -> 
( -.  B  e.  ( A  .o  x
)  <->  -.  B  e.  ( A  .o  suc  w
) ) )
5049biimpar 471 . . . . . . . . . . . . . . . . 17  |-  ( ( x  =  suc  w  /\  -.  B  e.  ( A  .o  suc  w
) )  ->  -.  B  e.  ( A  .o  x ) )
5134, 46, 50syl2anc 642 . . . . . . . . . . . . . . . 16  |-  ( ( ( A  e.  On  /\  B  e.  On  /\  A  =/=  (/) )  /\  A. z  e.  x  -.  B  e.  ( A  .o  suc  z )  /\  x  =  suc  w )  ->  -.  B  e.  ( A  .o  x
) )
52513expia 1153 . . . . . . . . . . . . . . 15  |-  ( ( ( A  e.  On  /\  B  e.  On  /\  A  =/=  (/) )  /\  A. z  e.  x  -.  B  e.  ( A  .o  suc  z ) )  ->  ( x  =  suc  w  ->  -.  B  e.  ( A  .o  x ) ) )
5352rexlimdvw 2670 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  On  /\  B  e.  On  /\  A  =/=  (/) )  /\  A. z  e.  x  -.  B  e.  ( A  .o  suc  z ) )  ->  ( E. w  e.  On  x  =  suc  w  ->  -.  B  e.  ( A  .o  x
) ) )
54 ralnex 2553 . . . . . . . . . . . . . . . . . 18  |-  ( A. z  e.  x  -.  B  e.  ( A  .o  suc  z )  <->  -.  E. z  e.  x  B  e.  ( A  .o  suc  z
) )
55 simpr 447 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( Lim  x  /\  A  e.  On )  ->  A  e.  On )
5623a1i 10 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( Lim  x  /\  A  e.  On )  ->  x  e.  _V )
57 simpl 443 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( Lim  x  /\  A  e.  On )  ->  Lim  x )
58 omlim 6532 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( A  e.  On  /\  ( x  e.  _V  /\ 
Lim  x ) )  ->  ( A  .o  x )  =  U_ z  e.  x  ( A  .o  z ) )
5955, 56, 57, 58syl12anc 1180 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( Lim  x  /\  A  e.  On )  ->  ( A  .o  x )  = 
U_ z  e.  x  ( A  .o  z
) )
6059eleq2d 2350 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( Lim  x  /\  A  e.  On )  ->  ( B  e.  ( A  .o  x )  <->  B  e.  U_ z  e.  x  ( A  .o  z ) ) )
61 eliun 3909 . . . . . . . . . . . . . . . . . . . . 21  |-  ( B  e.  U_ z  e.  x  ( A  .o  z )  <->  E. z  e.  x  B  e.  ( A  .o  z
) )
62 limord 4451 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( Lim  x  ->  Ord  x )
63623ad2ant1 976 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( Lim  x  /\  A  e.  On  /\  z  e.  x )  ->  Ord  x )
6463, 24sylibr 203 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( Lim  x  /\  A  e.  On  /\  z  e.  x )  ->  x  e.  On )
65 simp3 957 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( Lim  x  /\  A  e.  On  /\  z  e.  x )  ->  z  e.  x )
66 onelon 4417 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( x  e.  On  /\  z  e.  x )  ->  z  e.  On )
6764, 65, 66syl2anc 642 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( Lim  x  /\  A  e.  On  /\  z  e.  x )  ->  z  e.  On )
68 suceloni 4604 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( z  e.  On  ->  suc  z  e.  On )
6967, 68syl 15 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( Lim  x  /\  A  e.  On  /\  z  e.  x )  ->  suc  z  e.  On )
70 simp2 956 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( Lim  x  /\  A  e.  On  /\  z  e.  x )  ->  A  e.  On )
71 sssucid 4469 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  z  C_  suc  z
72 omwordi 6569 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( z  e.  On  /\  suc  z  e.  On  /\  A  e.  On )  ->  ( z  C_  suc  z  ->  ( A  .o  z )  C_  ( A  .o  suc  z
) ) )
7371, 72mpi 16 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( z  e.  On  /\  suc  z  e.  On  /\  A  e.  On )  ->  ( A  .o  z )  C_  ( A  .o  suc  z ) )
7467, 69, 70, 73syl3anc 1182 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( Lim  x  /\  A  e.  On  /\  z  e.  x )  ->  ( A  .o  z )  C_  ( A  .o  suc  z
) )
7574sseld 3179 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( Lim  x  /\  A  e.  On  /\  z  e.  x )  ->  ( B  e.  ( A  .o  z )  ->  B  e.  ( A  .o  suc  z ) ) )
76753expia 1153 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( Lim  x  /\  A  e.  On )  ->  (
z  e.  x  -> 
( B  e.  ( A  .o  z )  ->  B  e.  ( A  .o  suc  z
) ) ) )
7776reximdvai 2653 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( Lim  x  /\  A  e.  On )  ->  ( E. z  e.  x  B  e.  ( A  .o  z )  ->  E. z  e.  x  B  e.  ( A  .o  suc  z
) ) )
7861, 77syl5bi 208 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( Lim  x  /\  A  e.  On )  ->  ( B  e.  U_ z  e.  x  ( A  .o  z )  ->  E. z  e.  x  B  e.  ( A  .o  suc  z
) ) )
7960, 78sylbid 206 . . . . . . . . . . . . . . . . . . 19  |-  ( ( Lim  x  /\  A  e.  On )  ->  ( B  e.  ( A  .o  x )  ->  E. z  e.  x  B  e.  ( A  .o  suc  z
) ) )
8079con3d 125 . . . . . . . . . . . . . . . . . 18  |-  ( ( Lim  x  /\  A  e.  On )  ->  ( -.  E. z  e.  x  B  e.  ( A  .o  suc  z )  ->  -.  B  e.  ( A  .o  x ) ) )
8154, 80syl5bi 208 . . . . . . . . . . . . . . . . 17  |-  ( ( Lim  x  /\  A  e.  On )  ->  ( A. z  e.  x  -.  B  e.  ( A  .o  suc  z )  ->  -.  B  e.  ( A  .o  x
) ) )
8281expimpd 586 . . . . . . . . . . . . . . . 16  |-  ( Lim  x  ->  ( ( A  e.  On  /\  A. z  e.  x  -.  B  e.  ( A  .o  suc  z ) )  ->  -.  B  e.  ( A  .o  x
) ) )
8382com12 27 . . . . . . . . . . . . . . 15  |-  ( ( A  e.  On  /\  A. z  e.  x  -.  B  e.  ( A  .o  suc  z ) )  ->  ( Lim  x  ->  -.  B  e.  ( A  .o  x ) ) )
84833ad2antl1 1117 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  On  /\  B  e.  On  /\  A  =/=  (/) )  /\  A. z  e.  x  -.  B  e.  ( A  .o  suc  z ) )  ->  ( Lim  x  ->  -.  B  e.  ( A  .o  x ) ) )
8533, 53, 843jaod 1246 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  On  /\  B  e.  On  /\  A  =/=  (/) )  /\  A. z  e.  x  -.  B  e.  ( A  .o  suc  z ) )  ->  ( ( x  =  (/)  \/  E. w  e.  On  x  =  suc  w  \/  Lim  x )  ->  -.  B  e.  ( A  .o  x
) ) )
8626, 85syl5bi 208 . . . . . . . . . . . 12  |-  ( ( ( A  e.  On  /\  B  e.  On  /\  A  =/=  (/) )  /\  A. z  e.  x  -.  B  e.  ( A  .o  suc  z ) )  ->  ( x  e.  On  ->  -.  B  e.  ( A  .o  x
) ) )
8786impr 602 . . . . . . . . . . 11  |-  ( ( ( A  e.  On  /\  B  e.  On  /\  A  =/=  (/) )  /\  ( A. z  e.  x  -.  B  e.  ( A  .o  suc  z )  /\  x  e.  On ) )  ->  -.  B  e.  ( A  .o  x ) )
88 simpl1 958 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  On  /\  B  e.  On  /\  A  =/=  (/) )  /\  ( A. z  e.  x  -.  B  e.  ( A  .o  suc  z )  /\  x  e.  On ) )  ->  A  e.  On )
89 simprr 733 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  On  /\  B  e.  On  /\  A  =/=  (/) )  /\  ( A. z  e.  x  -.  B  e.  ( A  .o  suc  z )  /\  x  e.  On ) )  ->  x  e.  On )
90 omcl 6535 . . . . . . . . . . . . 13  |-  ( ( A  e.  On  /\  x  e.  On )  ->  ( A  .o  x
)  e.  On )
9188, 89, 90syl2anc 642 . . . . . . . . . . . 12  |-  ( ( ( A  e.  On  /\  B  e.  On  /\  A  =/=  (/) )  /\  ( A. z  e.  x  -.  B  e.  ( A  .o  suc  z )  /\  x  e.  On ) )  ->  ( A  .o  x )  e.  On )
92 simpl2 959 . . . . . . . . . . . 12  |-  ( ( ( A  e.  On  /\  B  e.  On  /\  A  =/=  (/) )  /\  ( A. z  e.  x  -.  B  e.  ( A  .o  suc  z )  /\  x  e.  On ) )  ->  B  e.  On )
93 ontri1 4426 . . . . . . . . . . . 12  |-  ( ( ( A  .o  x
)  e.  On  /\  B  e.  On )  ->  ( ( A  .o  x )  C_  B  <->  -.  B  e.  ( A  .o  x ) ) )
9491, 92, 93syl2anc 642 . . . . . . . . . . 11  |-  ( ( ( A  e.  On  /\  B  e.  On  /\  A  =/=  (/) )  /\  ( A. z  e.  x  -.  B  e.  ( A  .o  suc  z )  /\  x  e.  On ) )  ->  (
( A  .o  x
)  C_  B  <->  -.  B  e.  ( A  .o  x
) ) )
9587, 94mpbird 223 . . . . . . . . . 10  |-  ( ( ( A  e.  On  /\  B  e.  On  /\  A  =/=  (/) )  /\  ( A. z  e.  x  -.  B  e.  ( A  .o  suc  z )  /\  x  e.  On ) )  ->  ( A  .o  x )  C_  B )
96 oawordex 6555 . . . . . . . . . . 11  |-  ( ( ( A  .o  x
)  e.  On  /\  B  e.  On )  ->  ( ( A  .o  x )  C_  B  <->  E. y  e.  On  (
( A  .o  x
)  +o  y )  =  B ) )
9791, 92, 96syl2anc 642 . . . . . . . . . 10  |-  ( ( ( A  e.  On  /\  B  e.  On  /\  A  =/=  (/) )  /\  ( A. z  e.  x  -.  B  e.  ( A  .o  suc  z )  /\  x  e.  On ) )  ->  (
( A  .o  x
)  C_  B  <->  E. y  e.  On  ( ( A  .o  x )  +o  y )  =  B ) )
9895, 97mpbid 201 . . . . . . . . 9  |-  ( ( ( A  e.  On  /\  B  e.  On  /\  A  =/=  (/) )  /\  ( A. z  e.  x  -.  B  e.  ( A  .o  suc  z )  /\  x  e.  On ) )  ->  E. y  e.  On  ( ( A  .o  x )  +o  y )  =  B )
99983adantr1 1114 . . . . . . . 8  |-  ( ( ( A  e.  On  /\  B  e.  On  /\  A  =/=  (/) )  /\  ( B  e.  ( A  .o  suc  x )  /\  A. z  e.  x  -.  B  e.  ( A  .o  suc  z )  /\  x  e.  On )
)  ->  E. y  e.  On  ( ( A  .o  x )  +o  y )  =  B )
100 simp3r 984 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  On  /\  B  e.  On  /\  A  =/=  (/) )  /\  ( B  e.  ( A  .o  suc  x )  /\  A. z  e.  x  -.  B  e.  ( A  .o  suc  z )  /\  x  e.  On )  /\  ( y  e.  On  /\  ( ( A  .o  x )  +o  y
)  =  B ) )  ->  ( ( A  .o  x )  +o  y )  =  B )
101 simp21 988 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  On  /\  B  e.  On  /\  A  =/=  (/) )  /\  ( B  e.  ( A  .o  suc  x )  /\  A. z  e.  x  -.  B  e.  ( A  .o  suc  z )  /\  x  e.  On )  /\  ( y  e.  On  /\  ( ( A  .o  x )  +o  y
)  =  B ) )  ->  B  e.  ( A  .o  suc  x
) )
102 simp11 985 . . . . . . . . . . . . . . 15  |-  ( ( ( A  e.  On  /\  B  e.  On  /\  A  =/=  (/) )  /\  ( B  e.  ( A  .o  suc  x )  /\  A. z  e.  x  -.  B  e.  ( A  .o  suc  z )  /\  x  e.  On )  /\  ( y  e.  On  /\  ( ( A  .o  x )  +o  y
)  =  B ) )  ->  A  e.  On )
103 simp23 990 . . . . . . . . . . . . . . 15  |-  ( ( ( A  e.  On  /\  B  e.  On  /\  A  =/=  (/) )  /\  ( B  e.  ( A  .o  suc  x )  /\  A. z  e.  x  -.  B  e.  ( A  .o  suc  z )  /\  x  e.  On )  /\  ( y  e.  On  /\  ( ( A  .o  x )  +o  y
)  =  B ) )  ->  x  e.  On )
104 omsuc 6525 . . . . . . . . . . . . . . 15  |-  ( ( A  e.  On  /\  x  e.  On )  ->  ( A  .o  suc  x )  =  ( ( A  .o  x
)  +o  A ) )
105102, 103, 104syl2anc 642 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  On  /\  B  e.  On  /\  A  =/=  (/) )  /\  ( B  e.  ( A  .o  suc  x )  /\  A. z  e.  x  -.  B  e.  ( A  .o  suc  z )  /\  x  e.  On )  /\  ( y  e.  On  /\  ( ( A  .o  x )  +o  y
)  =  B ) )  ->  ( A  .o  suc  x )  =  ( ( A  .o  x )  +o  A
) )
106101, 105eleqtrd 2359 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  On  /\  B  e.  On  /\  A  =/=  (/) )  /\  ( B  e.  ( A  .o  suc  x )  /\  A. z  e.  x  -.  B  e.  ( A  .o  suc  z )  /\  x  e.  On )  /\  ( y  e.  On  /\  ( ( A  .o  x )  +o  y
)  =  B ) )  ->  B  e.  ( ( A  .o  x )  +o  A
) )
107100, 106eqeltrd 2357 . . . . . . . . . . . 12  |-  ( ( ( A  e.  On  /\  B  e.  On  /\  A  =/=  (/) )  /\  ( B  e.  ( A  .o  suc  x )  /\  A. z  e.  x  -.  B  e.  ( A  .o  suc  z )  /\  x  e.  On )  /\  ( y  e.  On  /\  ( ( A  .o  x )  +o  y
)  =  B ) )  ->  ( ( A  .o  x )  +o  y )  e.  ( ( A  .o  x
)  +o  A ) )
108 simp3l 983 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  On  /\  B  e.  On  /\  A  =/=  (/) )  /\  ( B  e.  ( A  .o  suc  x )  /\  A. z  e.  x  -.  B  e.  ( A  .o  suc  z )  /\  x  e.  On )  /\  ( y  e.  On  /\  ( ( A  .o  x )  +o  y
)  =  B ) )  ->  y  e.  On )
109102, 103, 90syl2anc 642 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  On  /\  B  e.  On  /\  A  =/=  (/) )  /\  ( B  e.  ( A  .o  suc  x )  /\  A. z  e.  x  -.  B  e.  ( A  .o  suc  z )  /\  x  e.  On )  /\  ( y  e.  On  /\  ( ( A  .o  x )  +o  y
)  =  B ) )  ->  ( A  .o  x )  e.  On )
110 oaord 6545 . . . . . . . . . . . . 13  |-  ( ( y  e.  On  /\  A  e.  On  /\  ( A  .o  x )  e.  On )  ->  (
y  e.  A  <->  ( ( A  .o  x )  +o  y )  e.  ( ( A  .o  x
)  +o  A ) ) )
111108, 102, 109, 110syl3anc 1182 . . . . . . . . . . . 12  |-  ( ( ( A  e.  On  /\  B  e.  On  /\  A  =/=  (/) )  /\  ( B  e.  ( A  .o  suc  x )  /\  A. z  e.  x  -.  B  e.  ( A  .o  suc  z )  /\  x  e.  On )  /\  ( y  e.  On  /\  ( ( A  .o  x )  +o  y
)  =  B ) )  ->  ( y  e.  A  <->  ( ( A  .o  x )  +o  y )  e.  ( ( A  .o  x
)  +o  A ) ) )
112107, 111mpbird 223 . . . . . . . . . . 11  |-  ( ( ( A  e.  On  /\  B  e.  On  /\  A  =/=  (/) )  /\  ( B  e.  ( A  .o  suc  x )  /\  A. z  e.  x  -.  B  e.  ( A  .o  suc  z )  /\  x  e.  On )  /\  ( y  e.  On  /\  ( ( A  .o  x )  +o  y
)  =  B ) )  ->  y  e.  A )
113112, 100jca 518 . . . . . . . . . 10  |-  ( ( ( A  e.  On  /\  B  e.  On  /\  A  =/=  (/) )  /\  ( B  e.  ( A  .o  suc  x )  /\  A. z  e.  x  -.  B  e.  ( A  .o  suc  z )  /\  x  e.  On )  /\  ( y  e.  On  /\  ( ( A  .o  x )  +o  y
)  =  B ) )  ->  ( y  e.  A  /\  (
( A  .o  x
)  +o  y )  =  B ) )
1141133expia 1153 . . . . . . . . 9  |-  ( ( ( A  e.  On  /\  B  e.  On  /\  A  =/=  (/) )  /\  ( B  e.  ( A  .o  suc  x )  /\  A. z  e.  x  -.  B  e.  ( A  .o  suc  z )  /\  x  e.  On )
)  ->  ( (
y  e.  On  /\  ( ( A  .o  x )  +o  y
)  =  B )  ->  ( y  e.  A  /\  ( ( A  .o  x )  +o  y )  =  B ) ) )
115114reximdv2 2652 . . . . . . . 8  |-  ( ( ( A  e.  On  /\  B  e.  On  /\  A  =/=  (/) )  /\  ( B  e.  ( A  .o  suc  x )  /\  A. z  e.  x  -.  B  e.  ( A  .o  suc  z )  /\  x  e.  On )
)  ->  ( E. y  e.  On  (
( A  .o  x
)  +o  y )  =  B  ->  E. y  e.  A  ( ( A  .o  x )  +o  y )  =  B ) )
11699, 115mpd 14 . . . . . . 7  |-  ( ( ( A  e.  On  /\  B  e.  On  /\  A  =/=  (/) )  /\  ( B  e.  ( A  .o  suc  x )  /\  A. z  e.  x  -.  B  e.  ( A  .o  suc  z )  /\  x  e.  On )
)  ->  E. y  e.  A  ( ( A  .o  x )  +o  y )  =  B )
117116expcom 424 . . . . . 6  |-  ( ( B  e.  ( A  .o  suc  x )  /\  A. z  e.  x  -.  B  e.  ( A  .o  suc  z )  /\  x  e.  On )  ->  (
( A  e.  On  /\  B  e.  On  /\  A  =/=  (/) )  ->  E. y  e.  A  ( ( A  .o  x )  +o  y )  =  B ) )
1181173expia 1153 . . . . 5  |-  ( ( B  e.  ( A  .o  suc  x )  /\  A. z  e.  x  -.  B  e.  ( A  .o  suc  z ) )  -> 
( x  e.  On  ->  ( ( A  e.  On  /\  B  e.  On  /\  A  =/=  (/) )  ->  E. y  e.  A  ( ( A  .o  x )  +o  y )  =  B ) ) )
119118com13 74 . . . 4  |-  ( ( A  e.  On  /\  B  e.  On  /\  A  =/=  (/) )  ->  (
x  e.  On  ->  ( ( B  e.  ( A  .o  suc  x
)  /\  A. z  e.  x  -.  B  e.  ( A  .o  suc  z ) )  ->  E. y  e.  A  ( ( A  .o  x )  +o  y
)  =  B ) ) )
120119reximdvai 2653 . . 3  |-  ( ( A  e.  On  /\  B  e.  On  /\  A  =/=  (/) )  ->  ( E. x  e.  On  ( B  e.  ( A  .o  suc  x )  /\  A. z  e.  x  -.  B  e.  ( A  .o  suc  z ) )  ->  E. x  e.  On  E. y  e.  A  ( ( A  .o  x
)  +o  y )  =  B ) )
12122, 120syl5 28 . 2  |-  ( ( A  e.  On  /\  B  e.  On  /\  A  =/=  (/) )  ->  ( E. x  e.  On  B  e.  ( A  .o  suc  x )  ->  E. x  e.  On  E. y  e.  A  ( ( A  .o  x
)  +o  y )  =  B ) )
12218, 121mpd 14 1  |-  ( ( A  e.  On  /\  B  e.  On  /\  A  =/=  (/) )  ->  E. x  e.  On  E. y  e.  A  ( ( A  .o  x )  +o  y )  =  B )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 176    /\ wa 358    \/ w3o 933    /\ w3a 934    = wceq 1623    e. wcel 1684    =/= wne 2446   A.wral 2543   E.wrex 2544   _Vcvv 2788    C_ wss 3152   (/)c0 3455   U_ciun 3905   Ord word 4391   Oncon0 4392   Lim wlim 4393   suc csuc 4394  (class class class)co 5858    +o coa 6476    .o comu 6477
This theorem is referenced by:  omeu  6583
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-rex 2549  df-reu 2550  df-rmo 2551  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-int 3863  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-1st 6122  df-2nd 6123  df-recs 6388  df-rdg 6423  df-1o 6479  df-oadd 6483  df-omul 6484
  Copyright terms: Public domain W3C validator