Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  omlfh3N Structured version   Unicode version

Theorem omlfh3N 30131
Description: Foulis-Holland Theorem, part 3. Dual of omlfh1N 30130. (Contributed by NM, 8-Nov-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
omlfh1.b  |-  B  =  ( Base `  K
)
omlfh1.j  |-  .\/  =  ( join `  K )
omlfh1.m  |-  ./\  =  ( meet `  K )
omlfh1.c  |-  C  =  ( cm `  K
)
Assertion
Ref Expression
omlfh3N  |-  ( ( K  e.  OML  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
)  /\  ( X C Y  /\  X C Z ) )  -> 
( X  .\/  ( Y  ./\  Z ) )  =  ( ( X 
.\/  Y )  ./\  ( X  .\/  Z ) ) )

Proof of Theorem omlfh3N
StepHypRef Expression
1 omlfh1.b . . . . . . 7  |-  B  =  ( Base `  K
)
2 eqid 2438 . . . . . . 7  |-  ( oc
`  K )  =  ( oc `  K
)
3 omlfh1.c . . . . . . 7  |-  C  =  ( cm `  K
)
41, 2, 3cmt4N 30124 . . . . . 6  |-  ( ( K  e.  OML  /\  X  e.  B  /\  Y  e.  B )  ->  ( X C Y  <-> 
( ( oc `  K ) `  X
) C ( ( oc `  K ) `
 Y ) ) )
543adant3r3 1165 . . . . 5  |-  ( ( K  e.  OML  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  ->  ( X C Y  <->  ( ( oc `  K ) `  X ) C ( ( oc `  K
) `  Y )
) )
61, 2, 3cmt4N 30124 . . . . . 6  |-  ( ( K  e.  OML  /\  X  e.  B  /\  Z  e.  B )  ->  ( X C Z  <-> 
( ( oc `  K ) `  X
) C ( ( oc `  K ) `
 Z ) ) )
763adant3r2 1164 . . . . 5  |-  ( ( K  e.  OML  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  ->  ( X C Z  <->  ( ( oc `  K ) `  X ) C ( ( oc `  K
) `  Z )
) )
85, 7anbi12d 693 . . . 4  |-  ( ( K  e.  OML  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  ->  (
( X C Y  /\  X C Z )  <->  ( ( ( oc `  K ) `
 X ) C ( ( oc `  K ) `  Y
)  /\  ( ( oc `  K ) `  X ) C ( ( oc `  K
) `  Z )
) ) )
9 simpl 445 . . . . 5  |-  ( ( K  e.  OML  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  ->  K  e.  OML )
10 omlop 30113 . . . . . . . 8  |-  ( K  e.  OML  ->  K  e.  OP )
1110adantr 453 . . . . . . 7  |-  ( ( K  e.  OML  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  ->  K  e.  OP )
12 simpr1 964 . . . . . . 7  |-  ( ( K  e.  OML  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  ->  X  e.  B )
131, 2opoccl 30066 . . . . . . 7  |-  ( ( K  e.  OP  /\  X  e.  B )  ->  ( ( oc `  K ) `  X
)  e.  B )
1411, 12, 13syl2anc 644 . . . . . 6  |-  ( ( K  e.  OML  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  ->  (
( oc `  K
) `  X )  e.  B )
15 simpr2 965 . . . . . . 7  |-  ( ( K  e.  OML  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  ->  Y  e.  B )
161, 2opoccl 30066 . . . . . . 7  |-  ( ( K  e.  OP  /\  Y  e.  B )  ->  ( ( oc `  K ) `  Y
)  e.  B )
1711, 15, 16syl2anc 644 . . . . . 6  |-  ( ( K  e.  OML  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  ->  (
( oc `  K
) `  Y )  e.  B )
18 simpr3 966 . . . . . . 7  |-  ( ( K  e.  OML  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  ->  Z  e.  B )
191, 2opoccl 30066 . . . . . . 7  |-  ( ( K  e.  OP  /\  Z  e.  B )  ->  ( ( oc `  K ) `  Z
)  e.  B )
2011, 18, 19syl2anc 644 . . . . . 6  |-  ( ( K  e.  OML  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  ->  (
( oc `  K
) `  Z )  e.  B )
2114, 17, 203jca 1135 . . . . 5  |-  ( ( K  e.  OML  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  ->  (
( ( oc `  K ) `  X
)  e.  B  /\  ( ( oc `  K ) `  Y
)  e.  B  /\  ( ( oc `  K ) `  Z
)  e.  B ) )
22 omlfh1.j . . . . . . . 8  |-  .\/  =  ( join `  K )
23 omlfh1.m . . . . . . . 8  |-  ./\  =  ( meet `  K )
241, 22, 23, 3omlfh1N 30130 . . . . . . 7  |-  ( ( K  e.  OML  /\  ( ( ( oc
`  K ) `  X )  e.  B  /\  ( ( oc `  K ) `  Y
)  e.  B  /\  ( ( oc `  K ) `  Z
)  e.  B )  /\  ( ( ( oc `  K ) `
 X ) C ( ( oc `  K ) `  Y
)  /\  ( ( oc `  K ) `  X ) C ( ( oc `  K
) `  Z )
) )  ->  (
( ( oc `  K ) `  X
)  ./\  ( (
( oc `  K
) `  Y )  .\/  ( ( oc `  K ) `  Z
) ) )  =  ( ( ( ( oc `  K ) `
 X )  ./\  ( ( oc `  K ) `  Y
) )  .\/  (
( ( oc `  K ) `  X
)  ./\  ( ( oc `  K ) `  Z ) ) ) )
2524fveq2d 5735 . . . . . 6  |-  ( ( K  e.  OML  /\  ( ( ( oc
`  K ) `  X )  e.  B  /\  ( ( oc `  K ) `  Y
)  e.  B  /\  ( ( oc `  K ) `  Z
)  e.  B )  /\  ( ( ( oc `  K ) `
 X ) C ( ( oc `  K ) `  Y
)  /\  ( ( oc `  K ) `  X ) C ( ( oc `  K
) `  Z )
) )  ->  (
( oc `  K
) `  ( (
( oc `  K
) `  X )  ./\  ( ( ( oc
`  K ) `  Y )  .\/  (
( oc `  K
) `  Z )
) ) )  =  ( ( oc `  K ) `  (
( ( ( oc
`  K ) `  X )  ./\  (
( oc `  K
) `  Y )
)  .\/  ( (
( oc `  K
) `  X )  ./\  ( ( oc `  K ) `  Z
) ) ) ) )
26253exp 1153 . . . . 5  |-  ( K  e.  OML  ->  (
( ( ( oc
`  K ) `  X )  e.  B  /\  ( ( oc `  K ) `  Y
)  e.  B  /\  ( ( oc `  K ) `  Z
)  e.  B )  ->  ( ( ( ( oc `  K
) `  X ) C ( ( oc
`  K ) `  Y )  /\  (
( oc `  K
) `  X ) C ( ( oc
`  K ) `  Z ) )  -> 
( ( oc `  K ) `  (
( ( oc `  K ) `  X
)  ./\  ( (
( oc `  K
) `  Y )  .\/  ( ( oc `  K ) `  Z
) ) ) )  =  ( ( oc
`  K ) `  ( ( ( ( oc `  K ) `
 X )  ./\  ( ( oc `  K ) `  Y
) )  .\/  (
( ( oc `  K ) `  X
)  ./\  ( ( oc `  K ) `  Z ) ) ) ) ) ) )
279, 21, 26sylc 59 . . . 4  |-  ( ( K  e.  OML  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  ->  (
( ( ( oc
`  K ) `  X ) C ( ( oc `  K
) `  Y )  /\  ( ( oc `  K ) `  X
) C ( ( oc `  K ) `
 Z ) )  ->  ( ( oc
`  K ) `  ( ( ( oc
`  K ) `  X )  ./\  (
( ( oc `  K ) `  Y
)  .\/  ( ( oc `  K ) `  Z ) ) ) )  =  ( ( oc `  K ) `
 ( ( ( ( oc `  K
) `  X )  ./\  ( ( oc `  K ) `  Y
) )  .\/  (
( ( oc `  K ) `  X
)  ./\  ( ( oc `  K ) `  Z ) ) ) ) ) )
288, 27sylbid 208 . . 3  |-  ( ( K  e.  OML  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  ->  (
( X C Y  /\  X C Z )  ->  ( ( oc `  K ) `  ( ( ( oc
`  K ) `  X )  ./\  (
( ( oc `  K ) `  Y
)  .\/  ( ( oc `  K ) `  Z ) ) ) )  =  ( ( oc `  K ) `
 ( ( ( ( oc `  K
) `  X )  ./\  ( ( oc `  K ) `  Y
) )  .\/  (
( ( oc `  K ) `  X
)  ./\  ( ( oc `  K ) `  Z ) ) ) ) ) )
29283impia 1151 . 2  |-  ( ( K  e.  OML  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
)  /\  ( X C Y  /\  X C Z ) )  -> 
( ( oc `  K ) `  (
( ( oc `  K ) `  X
)  ./\  ( (
( oc `  K
) `  Y )  .\/  ( ( oc `  K ) `  Z
) ) ) )  =  ( ( oc
`  K ) `  ( ( ( ( oc `  K ) `
 X )  ./\  ( ( oc `  K ) `  Y
) )  .\/  (
( ( oc `  K ) `  X
)  ./\  ( ( oc `  K ) `  Z ) ) ) ) )
30 omlol 30112 . . . . . 6  |-  ( K  e.  OML  ->  K  e.  OL )
3130adantr 453 . . . . 5  |-  ( ( K  e.  OML  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  ->  K  e.  OL )
32 omllat 30114 . . . . . . 7  |-  ( K  e.  OML  ->  K  e.  Lat )
3332adantr 453 . . . . . 6  |-  ( ( K  e.  OML  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  ->  K  e.  Lat )
341, 22latjcl 14484 . . . . . 6  |-  ( ( K  e.  Lat  /\  ( ( oc `  K ) `  Y
)  e.  B  /\  ( ( oc `  K ) `  Z
)  e.  B )  ->  ( ( ( oc `  K ) `
 Y )  .\/  ( ( oc `  K ) `  Z
) )  e.  B
)
3533, 17, 20, 34syl3anc 1185 . . . . 5  |-  ( ( K  e.  OML  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  ->  (
( ( oc `  K ) `  Y
)  .\/  ( ( oc `  K ) `  Z ) )  e.  B )
361, 22, 23, 2oldmm2 30090 . . . . 5  |-  ( ( K  e.  OL  /\  X  e.  B  /\  ( ( ( oc
`  K ) `  Y )  .\/  (
( oc `  K
) `  Z )
)  e.  B )  ->  ( ( oc
`  K ) `  ( ( ( oc
`  K ) `  X )  ./\  (
( ( oc `  K ) `  Y
)  .\/  ( ( oc `  K ) `  Z ) ) ) )  =  ( X 
.\/  ( ( oc
`  K ) `  ( ( ( oc
`  K ) `  Y )  .\/  (
( oc `  K
) `  Z )
) ) ) )
3731, 12, 35, 36syl3anc 1185 . . . 4  |-  ( ( K  e.  OML  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  ->  (
( oc `  K
) `  ( (
( oc `  K
) `  X )  ./\  ( ( ( oc
`  K ) `  Y )  .\/  (
( oc `  K
) `  Z )
) ) )  =  ( X  .\/  (
( oc `  K
) `  ( (
( oc `  K
) `  Y )  .\/  ( ( oc `  K ) `  Z
) ) ) ) )
381, 22, 23, 2oldmj4 30096 . . . . . 6  |-  ( ( K  e.  OL  /\  Y  e.  B  /\  Z  e.  B )  ->  ( ( oc `  K ) `  (
( ( oc `  K ) `  Y
)  .\/  ( ( oc `  K ) `  Z ) ) )  =  ( Y  ./\  Z ) )
3931, 15, 18, 38syl3anc 1185 . . . . 5  |-  ( ( K  e.  OML  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  ->  (
( oc `  K
) `  ( (
( oc `  K
) `  Y )  .\/  ( ( oc `  K ) `  Z
) ) )  =  ( Y  ./\  Z
) )
4039oveq2d 6100 . . . 4  |-  ( ( K  e.  OML  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  ->  ( X  .\/  ( ( oc
`  K ) `  ( ( ( oc
`  K ) `  Y )  .\/  (
( oc `  K
) `  Z )
) ) )  =  ( X  .\/  ( Y  ./\  Z ) ) )
4137, 40eqtr2d 2471 . . 3  |-  ( ( K  e.  OML  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  ->  ( X  .\/  ( Y  ./\  Z ) )  =  ( ( oc `  K
) `  ( (
( oc `  K
) `  X )  ./\  ( ( ( oc
`  K ) `  Y )  .\/  (
( oc `  K
) `  Z )
) ) ) )
42413adant3 978 . 2  |-  ( ( K  e.  OML  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
)  /\  ( X C Y  /\  X C Z ) )  -> 
( X  .\/  ( Y  ./\  Z ) )  =  ( ( oc
`  K ) `  ( ( ( oc
`  K ) `  X )  ./\  (
( ( oc `  K ) `  Y
)  .\/  ( ( oc `  K ) `  Z ) ) ) ) )
431, 23latmcl 14485 . . . . . 6  |-  ( ( K  e.  Lat  /\  ( ( oc `  K ) `  X
)  e.  B  /\  ( ( oc `  K ) `  Y
)  e.  B )  ->  ( ( ( oc `  K ) `
 X )  ./\  ( ( oc `  K ) `  Y
) )  e.  B
)
4433, 14, 17, 43syl3anc 1185 . . . . 5  |-  ( ( K  e.  OML  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  ->  (
( ( oc `  K ) `  X
)  ./\  ( ( oc `  K ) `  Y ) )  e.  B )
451, 23latmcl 14485 . . . . . 6  |-  ( ( K  e.  Lat  /\  ( ( oc `  K ) `  X
)  e.  B  /\  ( ( oc `  K ) `  Z
)  e.  B )  ->  ( ( ( oc `  K ) `
 X )  ./\  ( ( oc `  K ) `  Z
) )  e.  B
)
4633, 14, 20, 45syl3anc 1185 . . . . 5  |-  ( ( K  e.  OML  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  ->  (
( ( oc `  K ) `  X
)  ./\  ( ( oc `  K ) `  Z ) )  e.  B )
471, 22, 23, 2oldmj1 30093 . . . . 5  |-  ( ( K  e.  OL  /\  ( ( ( oc
`  K ) `  X )  ./\  (
( oc `  K
) `  Y )
)  e.  B  /\  ( ( ( oc
`  K ) `  X )  ./\  (
( oc `  K
) `  Z )
)  e.  B )  ->  ( ( oc
`  K ) `  ( ( ( ( oc `  K ) `
 X )  ./\  ( ( oc `  K ) `  Y
) )  .\/  (
( ( oc `  K ) `  X
)  ./\  ( ( oc `  K ) `  Z ) ) ) )  =  ( ( ( oc `  K
) `  ( (
( oc `  K
) `  X )  ./\  ( ( oc `  K ) `  Y
) ) )  ./\  ( ( oc `  K ) `  (
( ( oc `  K ) `  X
)  ./\  ( ( oc `  K ) `  Z ) ) ) ) )
4831, 44, 46, 47syl3anc 1185 . . . 4  |-  ( ( K  e.  OML  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  ->  (
( oc `  K
) `  ( (
( ( oc `  K ) `  X
)  ./\  ( ( oc `  K ) `  Y ) )  .\/  ( ( ( oc
`  K ) `  X )  ./\  (
( oc `  K
) `  Z )
) ) )  =  ( ( ( oc
`  K ) `  ( ( ( oc
`  K ) `  X )  ./\  (
( oc `  K
) `  Y )
) )  ./\  (
( oc `  K
) `  ( (
( oc `  K
) `  X )  ./\  ( ( oc `  K ) `  Z
) ) ) ) )
491, 22, 23, 2oldmm4 30092 . . . . . 6  |-  ( ( K  e.  OL  /\  X  e.  B  /\  Y  e.  B )  ->  ( ( oc `  K ) `  (
( ( oc `  K ) `  X
)  ./\  ( ( oc `  K ) `  Y ) ) )  =  ( X  .\/  Y ) )
5031, 12, 15, 49syl3anc 1185 . . . . 5  |-  ( ( K  e.  OML  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  ->  (
( oc `  K
) `  ( (
( oc `  K
) `  X )  ./\  ( ( oc `  K ) `  Y
) ) )  =  ( X  .\/  Y
) )
511, 22, 23, 2oldmm4 30092 . . . . . 6  |-  ( ( K  e.  OL  /\  X  e.  B  /\  Z  e.  B )  ->  ( ( oc `  K ) `  (
( ( oc `  K ) `  X
)  ./\  ( ( oc `  K ) `  Z ) ) )  =  ( X  .\/  Z ) )
5231, 12, 18, 51syl3anc 1185 . . . . 5  |-  ( ( K  e.  OML  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  ->  (
( oc `  K
) `  ( (
( oc `  K
) `  X )  ./\  ( ( oc `  K ) `  Z
) ) )  =  ( X  .\/  Z
) )
5350, 52oveq12d 6102 . . . 4  |-  ( ( K  e.  OML  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  ->  (
( ( oc `  K ) `  (
( ( oc `  K ) `  X
)  ./\  ( ( oc `  K ) `  Y ) ) ) 
./\  ( ( oc
`  K ) `  ( ( ( oc
`  K ) `  X )  ./\  (
( oc `  K
) `  Z )
) ) )  =  ( ( X  .\/  Y )  ./\  ( X  .\/  Z ) ) )
5448, 53eqtr2d 2471 . . 3  |-  ( ( K  e.  OML  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  ->  (
( X  .\/  Y
)  ./\  ( X  .\/  Z ) )  =  ( ( oc `  K ) `  (
( ( ( oc
`  K ) `  X )  ./\  (
( oc `  K
) `  Y )
)  .\/  ( (
( oc `  K
) `  X )  ./\  ( ( oc `  K ) `  Z
) ) ) ) )
55543adant3 978 . 2  |-  ( ( K  e.  OML  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
)  /\  ( X C Y  /\  X C Z ) )  -> 
( ( X  .\/  Y )  ./\  ( X  .\/  Z ) )  =  ( ( oc `  K ) `  (
( ( ( oc
`  K ) `  X )  ./\  (
( oc `  K
) `  Y )
)  .\/  ( (
( oc `  K
) `  X )  ./\  ( ( oc `  K ) `  Z
) ) ) ) )
5629, 42, 553eqtr4d 2480 1  |-  ( ( K  e.  OML  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
)  /\  ( X C Y  /\  X C Z ) )  -> 
( X  .\/  ( Y  ./\  Z ) )  =  ( ( X 
.\/  Y )  ./\  ( X  .\/  Z ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 178    /\ wa 360    /\ w3a 937    = wceq 1653    e. wcel 1726   class class class wbr 4215   ` cfv 5457  (class class class)co 6084   Basecbs 13474   occoc 13542   joincjn 14406   meetcmee 14407   Latclat 14479   OPcops 30044   cmccmtN 30045   OLcol 30046   OMLcoml 30047
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-13 1728  ax-14 1730  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2419  ax-rep 4323  ax-sep 4333  ax-nul 4341  ax-pow 4380  ax-pr 4406  ax-un 4704
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2287  df-mo 2288  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-nel 2604  df-ral 2712  df-rex 2713  df-reu 2714  df-rab 2716  df-v 2960  df-sbc 3164  df-csb 3254  df-dif 3325  df-un 3327  df-in 3329  df-ss 3336  df-nul 3631  df-if 3742  df-pw 3803  df-sn 3822  df-pr 3823  df-op 3825  df-uni 4018  df-iun 4097  df-br 4216  df-opab 4270  df-mpt 4271  df-id 4501  df-xp 4887  df-rel 4888  df-cnv 4889  df-co 4890  df-dm 4891  df-rn 4892  df-res 4893  df-ima 4894  df-iota 5421  df-fun 5459  df-fn 5460  df-f 5461  df-f1 5462  df-fo 5463  df-f1o 5464  df-fv 5465  df-ov 6087  df-oprab 6088  df-mpt2 6089  df-1st 6352  df-2nd 6353  df-undef 6546  df-riota 6552  df-poset 14408  df-lub 14436  df-glb 14437  df-join 14438  df-meet 14439  df-p0 14473  df-lat 14480  df-oposet 30048  df-cmtN 30049  df-ol 30050  df-oml 30051
  Copyright terms: Public domain W3C validator