Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  omllaw5N Unicode version

Theorem omllaw5N 29437
Description: The orthomodular law. Remark in [Kalmbach] p. 22. (pjoml5 22192 analog.) (Contributed by NM, 14-Nov-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
omllaw5.b  |-  B  =  ( Base `  K
)
omllaw5.j  |-  .\/  =  ( join `  K )
omllaw5.m  |-  ./\  =  ( meet `  K )
omllaw5.o  |-  ._|_  =  ( oc `  K )
Assertion
Ref Expression
omllaw5N  |-  ( ( K  e.  OML  /\  X  e.  B  /\  Y  e.  B )  ->  ( X  .\/  (
(  ._|_  `  X )  ./\  ( X  .\/  Y
) ) )  =  ( X  .\/  Y
) )

Proof of Theorem omllaw5N
StepHypRef Expression
1 simp1 955 . . 3  |-  ( ( K  e.  OML  /\  X  e.  B  /\  Y  e.  B )  ->  K  e.  OML )
2 simp2 956 . . 3  |-  ( ( K  e.  OML  /\  X  e.  B  /\  Y  e.  B )  ->  X  e.  B )
3 omllat 29432 . . . 4  |-  ( K  e.  OML  ->  K  e.  Lat )
4 omllaw5.b . . . . 5  |-  B  =  ( Base `  K
)
5 omllaw5.j . . . . 5  |-  .\/  =  ( join `  K )
64, 5latjcl 14156 . . . 4  |-  ( ( K  e.  Lat  /\  X  e.  B  /\  Y  e.  B )  ->  ( X  .\/  Y
)  e.  B )
73, 6syl3an1 1215 . . 3  |-  ( ( K  e.  OML  /\  X  e.  B  /\  Y  e.  B )  ->  ( X  .\/  Y
)  e.  B )
81, 2, 73jca 1132 . 2  |-  ( ( K  e.  OML  /\  X  e.  B  /\  Y  e.  B )  ->  ( K  e.  OML  /\  X  e.  B  /\  ( X  .\/  Y )  e.  B ) )
9 eqid 2283 . . . 4  |-  ( le
`  K )  =  ( le `  K
)
104, 9, 5latlej1 14166 . . 3  |-  ( ( K  e.  Lat  /\  X  e.  B  /\  Y  e.  B )  ->  X ( le `  K ) ( X 
.\/  Y ) )
113, 10syl3an1 1215 . 2  |-  ( ( K  e.  OML  /\  X  e.  B  /\  Y  e.  B )  ->  X ( le `  K ) ( X 
.\/  Y ) )
12 omllaw5.m . . 3  |-  ./\  =  ( meet `  K )
13 omllaw5.o . . 3  |-  ._|_  =  ( oc `  K )
144, 9, 5, 12, 13omllaw2N 29434 . 2  |-  ( ( K  e.  OML  /\  X  e.  B  /\  ( X  .\/  Y )  e.  B )  -> 
( X ( le
`  K ) ( X  .\/  Y )  ->  ( X  .\/  ( (  ._|_  `  X
)  ./\  ( X  .\/  Y ) ) )  =  ( X  .\/  Y ) ) )
158, 11, 14sylc 56 1  |-  ( ( K  e.  OML  /\  X  e.  B  /\  Y  e.  B )  ->  ( X  .\/  (
(  ._|_  `  X )  ./\  ( X  .\/  Y
) ) )  =  ( X  .\/  Y
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ w3a 934    = wceq 1623    e. wcel 1684   class class class wbr 4023   ` cfv 5255  (class class class)co 5858   Basecbs 13148   lecple 13215   occoc 13216   joincjn 14078   meetcmee 14079   Latclat 14151   OMLcoml 29365
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-reu 2550  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-op 3649  df-uni 3828  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-id 4309  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-1st 6122  df-2nd 6123  df-undef 6298  df-riota 6304  df-lub 14108  df-join 14110  df-meet 14111  df-lat 14152  df-oposet 29366  df-ol 29368  df-oml 29369
  Copyright terms: Public domain W3C validator