Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  omllaw5N Unicode version

Theorem omllaw5N 29363
Description: The orthomodular law. Remark in [Kalmbach] p. 22. (pjoml5 22964 analog.) (Contributed by NM, 14-Nov-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
omllaw5.b  |-  B  =  ( Base `  K
)
omllaw5.j  |-  .\/  =  ( join `  K )
omllaw5.m  |-  ./\  =  ( meet `  K )
omllaw5.o  |-  ._|_  =  ( oc `  K )
Assertion
Ref Expression
omllaw5N  |-  ( ( K  e.  OML  /\  X  e.  B  /\  Y  e.  B )  ->  ( X  .\/  (
(  ._|_  `  X )  ./\  ( X  .\/  Y
) ) )  =  ( X  .\/  Y
) )

Proof of Theorem omllaw5N
StepHypRef Expression
1 simp1 957 . . 3  |-  ( ( K  e.  OML  /\  X  e.  B  /\  Y  e.  B )  ->  K  e.  OML )
2 simp2 958 . . 3  |-  ( ( K  e.  OML  /\  X  e.  B  /\  Y  e.  B )  ->  X  e.  B )
3 omllat 29358 . . . 4  |-  ( K  e.  OML  ->  K  e.  Lat )
4 omllaw5.b . . . . 5  |-  B  =  ( Base `  K
)
5 omllaw5.j . . . . 5  |-  .\/  =  ( join `  K )
64, 5latjcl 14407 . . . 4  |-  ( ( K  e.  Lat  /\  X  e.  B  /\  Y  e.  B )  ->  ( X  .\/  Y
)  e.  B )
73, 6syl3an1 1217 . . 3  |-  ( ( K  e.  OML  /\  X  e.  B  /\  Y  e.  B )  ->  ( X  .\/  Y
)  e.  B )
81, 2, 73jca 1134 . 2  |-  ( ( K  e.  OML  /\  X  e.  B  /\  Y  e.  B )  ->  ( K  e.  OML  /\  X  e.  B  /\  ( X  .\/  Y )  e.  B ) )
9 eqid 2388 . . . 4  |-  ( le
`  K )  =  ( le `  K
)
104, 9, 5latlej1 14417 . . 3  |-  ( ( K  e.  Lat  /\  X  e.  B  /\  Y  e.  B )  ->  X ( le `  K ) ( X 
.\/  Y ) )
113, 10syl3an1 1217 . 2  |-  ( ( K  e.  OML  /\  X  e.  B  /\  Y  e.  B )  ->  X ( le `  K ) ( X 
.\/  Y ) )
12 omllaw5.m . . 3  |-  ./\  =  ( meet `  K )
13 omllaw5.o . . 3  |-  ._|_  =  ( oc `  K )
144, 9, 5, 12, 13omllaw2N 29360 . 2  |-  ( ( K  e.  OML  /\  X  e.  B  /\  ( X  .\/  Y )  e.  B )  -> 
( X ( le
`  K ) ( X  .\/  Y )  ->  ( X  .\/  ( (  ._|_  `  X
)  ./\  ( X  .\/  Y ) ) )  =  ( X  .\/  Y ) ) )
158, 11, 14sylc 58 1  |-  ( ( K  e.  OML  /\  X  e.  B  /\  Y  e.  B )  ->  ( X  .\/  (
(  ._|_  `  X )  ./\  ( X  .\/  Y
) ) )  =  ( X  .\/  Y
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ w3a 936    = wceq 1649    e. wcel 1717   class class class wbr 4154   ` cfv 5395  (class class class)co 6021   Basecbs 13397   lecple 13464   occoc 13465   joincjn 14329   meetcmee 14330   Latclat 14402   OMLcoml 29291
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-13 1719  ax-14 1721  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2369  ax-rep 4262  ax-sep 4272  ax-nul 4280  ax-pow 4319  ax-pr 4345  ax-un 4642
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2243  df-mo 2244  df-clab 2375  df-cleq 2381  df-clel 2384  df-nfc 2513  df-ne 2553  df-nel 2554  df-ral 2655  df-rex 2656  df-reu 2657  df-rab 2659  df-v 2902  df-sbc 3106  df-csb 3196  df-dif 3267  df-un 3269  df-in 3271  df-ss 3278  df-nul 3573  df-if 3684  df-pw 3745  df-sn 3764  df-pr 3765  df-op 3767  df-uni 3959  df-iun 4038  df-br 4155  df-opab 4209  df-mpt 4210  df-id 4440  df-xp 4825  df-rel 4826  df-cnv 4827  df-co 4828  df-dm 4829  df-rn 4830  df-res 4831  df-ima 4832  df-iota 5359  df-fun 5397  df-fn 5398  df-f 5399  df-f1 5400  df-fo 5401  df-f1o 5402  df-fv 5403  df-ov 6024  df-oprab 6025  df-mpt2 6026  df-1st 6289  df-2nd 6290  df-undef 6480  df-riota 6486  df-lub 14359  df-join 14361  df-meet 14362  df-lat 14403  df-oposet 29292  df-ol 29294  df-oml 29295
  Copyright terms: Public domain W3C validator