MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  omopthlem2 Unicode version

Theorem omopthlem2 6654
Description: Lemma for omopthi 6655. (Contributed by Scott Fenton, 16-Apr-2012.) (Revised by Mario Carneiro, 17-Nov-2014.)
Hypotheses
Ref Expression
omopthlem2.1  |-  A  e. 
om
omopthlem2.2  |-  B  e. 
om
omopthlem2.3  |-  C  e. 
om
omopthlem2.4  |-  D  e. 
om
Assertion
Ref Expression
omopthlem2  |-  ( ( A  +o  B )  e.  C  ->  -.  ( ( C  .o  C )  +o  D
)  =  ( ( ( A  +o  B
)  .o  ( A  +o  B ) )  +o  B ) )

Proof of Theorem omopthlem2
StepHypRef Expression
1 omopthlem2.3 . . . . . . 7  |-  C  e. 
om
21, 1nnmcli 6613 . . . . . 6  |-  ( C  .o  C )  e. 
om
3 omopthlem2.4 . . . . . 6  |-  D  e. 
om
42, 3nnacli 6612 . . . . 5  |-  ( ( C  .o  C )  +o  D )  e. 
om
54nnoni 4663 . . . 4  |-  ( ( C  .o  C )  +o  D )  e.  On
65onirri 4499 . . 3  |-  -.  (
( C  .o  C
)  +o  D )  e.  ( ( C  .o  C )  +o  D )
7 eleq1 2343 . . 3  |-  ( ( ( C  .o  C
)  +o  D )  =  ( ( ( A  +o  B )  .o  ( A  +o  B ) )  +o  B )  ->  (
( ( C  .o  C )  +o  D
)  e.  ( ( C  .o  C )  +o  D )  <->  ( (
( A  +o  B
)  .o  ( A  +o  B ) )  +o  B )  e.  ( ( C  .o  C )  +o  D
) ) )
86, 7mtbii 293 . 2  |-  ( ( ( C  .o  C
)  +o  D )  =  ( ( ( A  +o  B )  .o  ( A  +o  B ) )  +o  B )  ->  -.  ( ( ( A  +o  B )  .o  ( A  +o  B
) )  +o  B
)  e.  ( ( C  .o  C )  +o  D ) )
9 nnaword1 6627 . . . 4  |-  ( ( ( C  .o  C
)  e.  om  /\  D  e.  om )  ->  ( C  .o  C
)  C_  ( ( C  .o  C )  +o  D ) )
102, 3, 9mp2an 653 . . 3  |-  ( C  .o  C )  C_  ( ( C  .o  C )  +o  D
)
11 omopthlem2.2 . . . . . . . . 9  |-  B  e. 
om
12 omopthlem2.1 . . . . . . . . . . 11  |-  A  e. 
om
1312, 11nnacli 6612 . . . . . . . . . 10  |-  ( A  +o  B )  e. 
om
1413, 12nnacli 6612 . . . . . . . . 9  |-  ( ( A  +o  B )  +o  A )  e. 
om
15 nnaword1 6627 . . . . . . . . 9  |-  ( ( B  e.  om  /\  ( ( A  +o  B )  +o  A
)  e.  om )  ->  B  C_  ( B  +o  ( ( A  +o  B )  +o  A
) ) )
1611, 14, 15mp2an 653 . . . . . . . 8  |-  B  C_  ( B  +o  (
( A  +o  B
)  +o  A ) )
17 nnacom 6615 . . . . . . . . 9  |-  ( ( B  e.  om  /\  ( ( A  +o  B )  +o  A
)  e.  om )  ->  ( B  +o  (
( A  +o  B
)  +o  A ) )  =  ( ( ( A  +o  B
)  +o  A )  +o  B ) )
1811, 14, 17mp2an 653 . . . . . . . 8  |-  ( B  +o  ( ( A  +o  B )  +o  A ) )  =  ( ( ( A  +o  B )  +o  A )  +o  B
)
1916, 18sseqtri 3210 . . . . . . 7  |-  B  C_  ( ( ( A  +o  B )  +o  A )  +o  B
)
20 nnaass 6620 . . . . . . . . 9  |-  ( ( ( A  +o  B
)  e.  om  /\  A  e.  om  /\  B  e.  om )  ->  (
( ( A  +o  B )  +o  A
)  +o  B )  =  ( ( A  +o  B )  +o  ( A  +o  B
) ) )
2113, 12, 11, 20mp3an 1277 . . . . . . . 8  |-  ( ( ( A  +o  B
)  +o  A )  +o  B )  =  ( ( A  +o  B )  +o  ( A  +o  B ) )
22 nnm2 6647 . . . . . . . . 9  |-  ( ( A  +o  B )  e.  om  ->  (
( A  +o  B
)  .o  2o )  =  ( ( A  +o  B )  +o  ( A  +o  B
) ) )
2313, 22ax-mp 8 . . . . . . . 8  |-  ( ( A  +o  B )  .o  2o )  =  ( ( A  +o  B )  +o  ( A  +o  B ) )
2421, 23eqtr4i 2306 . . . . . . 7  |-  ( ( ( A  +o  B
)  +o  A )  +o  B )  =  ( ( A  +o  B )  .o  2o )
2519, 24sseqtri 3210 . . . . . 6  |-  B  C_  ( ( A  +o  B )  .o  2o )
26 2onn 6638 . . . . . . . 8  |-  2o  e.  om
2713, 26nnmcli 6613 . . . . . . 7  |-  ( ( A  +o  B )  .o  2o )  e. 
om
2813, 13nnmcli 6613 . . . . . . 7  |-  ( ( A  +o  B )  .o  ( A  +o  B ) )  e. 
om
29 nnawordi 6619 . . . . . . 7  |-  ( ( B  e.  om  /\  ( ( A  +o  B )  .o  2o )  e.  om  /\  (
( A  +o  B
)  .o  ( A  +o  B ) )  e.  om )  -> 
( B  C_  (
( A  +o  B
)  .o  2o )  ->  ( B  +o  ( ( A  +o  B )  .o  ( A  +o  B ) ) )  C_  ( (
( A  +o  B
)  .o  2o )  +o  ( ( A  +o  B )  .o  ( A  +o  B
) ) ) ) )
3011, 27, 28, 29mp3an 1277 . . . . . 6  |-  ( B 
C_  ( ( A  +o  B )  .o  2o )  ->  ( B  +o  ( ( A  +o  B )  .o  ( A  +o  B
) ) )  C_  ( ( ( A  +o  B )  .o  2o )  +o  (
( A  +o  B
)  .o  ( A  +o  B ) ) ) )
3125, 30ax-mp 8 . . . . 5  |-  ( B  +o  ( ( A  +o  B )  .o  ( A  +o  B
) ) )  C_  ( ( ( A  +o  B )  .o  2o )  +o  (
( A  +o  B
)  .o  ( A  +o  B ) ) )
32 nnacom 6615 . . . . . 6  |-  ( ( ( ( A  +o  B )  .o  ( A  +o  B ) )  e.  om  /\  B  e.  om )  ->  (
( ( A  +o  B )  .o  ( A  +o  B ) )  +o  B )  =  ( B  +o  (
( A  +o  B
)  .o  ( A  +o  B ) ) ) )
3328, 11, 32mp2an 653 . . . . 5  |-  ( ( ( A  +o  B
)  .o  ( A  +o  B ) )  +o  B )  =  ( B  +o  (
( A  +o  B
)  .o  ( A  +o  B ) ) )
34 nnacom 6615 . . . . . 6  |-  ( ( ( ( A  +o  B )  .o  ( A  +o  B ) )  e.  om  /\  (
( A  +o  B
)  .o  2o )  e.  om )  -> 
( ( ( A  +o  B )  .o  ( A  +o  B
) )  +o  (
( A  +o  B
)  .o  2o ) )  =  ( ( ( A  +o  B
)  .o  2o )  +o  ( ( A  +o  B )  .o  ( A  +o  B
) ) ) )
3528, 27, 34mp2an 653 . . . . 5  |-  ( ( ( A  +o  B
)  .o  ( A  +o  B ) )  +o  ( ( A  +o  B )  .o  2o ) )  =  ( ( ( A  +o  B )  .o  2o )  +o  (
( A  +o  B
)  .o  ( A  +o  B ) ) )
3631, 33, 353sstr4i 3217 . . . 4  |-  ( ( ( A  +o  B
)  .o  ( A  +o  B ) )  +o  B )  C_  ( ( ( A  +o  B )  .o  ( A  +o  B
) )  +o  (
( A  +o  B
)  .o  2o ) )
3713, 1omopthlem1 6653 . . . 4  |-  ( ( A  +o  B )  e.  C  ->  (
( ( A  +o  B )  .o  ( A  +o  B ) )  +o  ( ( A  +o  B )  .o  2o ) )  e.  ( C  .o  C
) )
3828, 11nnacli 6612 . . . . . 6  |-  ( ( ( A  +o  B
)  .o  ( A  +o  B ) )  +o  B )  e. 
om
3938nnoni 4663 . . . . 5  |-  ( ( ( A  +o  B
)  .o  ( A  +o  B ) )  +o  B )  e.  On
402nnoni 4663 . . . . 5  |-  ( C  .o  C )  e.  On
41 ontr2 4439 . . . . 5  |-  ( ( ( ( ( A  +o  B )  .o  ( A  +o  B
) )  +o  B
)  e.  On  /\  ( C  .o  C
)  e.  On )  ->  ( ( ( ( ( A  +o  B )  .o  ( A  +o  B ) )  +o  B )  C_  ( ( ( A  +o  B )  .o  ( A  +o  B
) )  +o  (
( A  +o  B
)  .o  2o ) )  /\  ( ( ( A  +o  B
)  .o  ( A  +o  B ) )  +o  ( ( A  +o  B )  .o  2o ) )  e.  ( C  .o  C
) )  ->  (
( ( A  +o  B )  .o  ( A  +o  B ) )  +o  B )  e.  ( C  .o  C
) ) )
4239, 40, 41mp2an 653 . . . 4  |-  ( ( ( ( ( A  +o  B )  .o  ( A  +o  B
) )  +o  B
)  C_  ( (
( A  +o  B
)  .o  ( A  +o  B ) )  +o  ( ( A  +o  B )  .o  2o ) )  /\  ( ( ( A  +o  B )  .o  ( A  +o  B
) )  +o  (
( A  +o  B
)  .o  2o ) )  e.  ( C  .o  C ) )  ->  ( ( ( A  +o  B )  .o  ( A  +o  B ) )  +o  B )  e.  ( C  .o  C ) )
4336, 37, 42sylancr 644 . . 3  |-  ( ( A  +o  B )  e.  C  ->  (
( ( A  +o  B )  .o  ( A  +o  B ) )  +o  B )  e.  ( C  .o  C
) )
4410, 43sseldi 3178 . 2  |-  ( ( A  +o  B )  e.  C  ->  (
( ( A  +o  B )  .o  ( A  +o  B ) )  +o  B )  e.  ( ( C  .o  C )  +o  D
) )
458, 44nsyl3 111 1  |-  ( ( A  +o  B )  e.  C  ->  -.  ( ( C  .o  C )  +o  D
)  =  ( ( ( A  +o  B
)  .o  ( A  +o  B ) )  +o  B ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 358    = wceq 1623    e. wcel 1684    C_ wss 3152   Oncon0 4392   omcom 4656  (class class class)co 5858   2oc2o 6473    +o coa 6476    .o comu 6477
This theorem is referenced by:  omopthi  6655
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-rex 2549  df-reu 2550  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-1st 6122  df-2nd 6123  df-recs 6388  df-rdg 6423  df-1o 6479  df-2o 6480  df-oadd 6483  df-omul 6484
  Copyright terms: Public domain W3C validator