MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  omord Unicode version

Theorem omord 6566
Description: Ordering property of ordinal multiplication. Proposition 8.19 of [TakeutiZaring] p. 63. (Contributed by NM, 14-Dec-2004.)
Assertion
Ref Expression
omord  |-  ( ( A  e.  On  /\  B  e.  On  /\  C  e.  On )  ->  (
( A  e.  B  /\  (/)  e.  C )  <-> 
( C  .o  A
)  e.  ( C  .o  B ) ) )

Proof of Theorem omord
StepHypRef Expression
1 omord2 6565 . . . 4  |-  ( ( ( A  e.  On  /\  B  e.  On  /\  C  e.  On )  /\  (/)  e.  C )  ->  ( A  e.  B  <->  ( C  .o  A )  e.  ( C  .o  B ) ) )
21ex 423 . . 3  |-  ( ( A  e.  On  /\  B  e.  On  /\  C  e.  On )  ->  ( (/) 
e.  C  ->  ( A  e.  B  <->  ( C  .o  A )  e.  ( C  .o  B ) ) ) )
32pm5.32rd 621 . 2  |-  ( ( A  e.  On  /\  B  e.  On  /\  C  e.  On )  ->  (
( A  e.  B  /\  (/)  e.  C )  <-> 
( ( C  .o  A )  e.  ( C  .o  B )  /\  (/)  e.  C ) ) )
4 simpl 443 . . 3  |-  ( ( ( C  .o  A
)  e.  ( C  .o  B )  /\  (/) 
e.  C )  -> 
( C  .o  A
)  e.  ( C  .o  B ) )
5 ne0i 3461 . . . . . . . 8  |-  ( ( C  .o  A )  e.  ( C  .o  B )  ->  ( C  .o  B )  =/=  (/) )
6 om0r 6538 . . . . . . . . . 10  |-  ( B  e.  On  ->  ( (/) 
.o  B )  =  (/) )
7 oveq1 5865 . . . . . . . . . . 11  |-  ( C  =  (/)  ->  ( C  .o  B )  =  ( (/)  .o  B
) )
87eqeq1d 2291 . . . . . . . . . 10  |-  ( C  =  (/)  ->  ( ( C  .o  B )  =  (/)  <->  ( (/)  .o  B
)  =  (/) ) )
96, 8syl5ibrcom 213 . . . . . . . . 9  |-  ( B  e.  On  ->  ( C  =  (/)  ->  ( C  .o  B )  =  (/) ) )
109necon3d 2484 . . . . . . . 8  |-  ( B  e.  On  ->  (
( C  .o  B
)  =/=  (/)  ->  C  =/=  (/) ) )
115, 10syl5 28 . . . . . . 7  |-  ( B  e.  On  ->  (
( C  .o  A
)  e.  ( C  .o  B )  ->  C  =/=  (/) ) )
1211adantr 451 . . . . . 6  |-  ( ( B  e.  On  /\  C  e.  On )  ->  ( ( C  .o  A )  e.  ( C  .o  B )  ->  C  =/=  (/) ) )
13 on0eln0 4447 . . . . . . 7  |-  ( C  e.  On  ->  ( (/) 
e.  C  <->  C  =/=  (/) ) )
1413adantl 452 . . . . . 6  |-  ( ( B  e.  On  /\  C  e.  On )  ->  ( (/)  e.  C  <->  C  =/=  (/) ) )
1512, 14sylibrd 225 . . . . 5  |-  ( ( B  e.  On  /\  C  e.  On )  ->  ( ( C  .o  A )  e.  ( C  .o  B )  ->  (/)  e.  C ) )
16153adant1 973 . . . 4  |-  ( ( A  e.  On  /\  B  e.  On  /\  C  e.  On )  ->  (
( C  .o  A
)  e.  ( C  .o  B )  ->  (/) 
e.  C ) )
1716ancld 536 . . 3  |-  ( ( A  e.  On  /\  B  e.  On  /\  C  e.  On )  ->  (
( C  .o  A
)  e.  ( C  .o  B )  -> 
( ( C  .o  A )  e.  ( C  .o  B )  /\  (/)  e.  C ) ) )
184, 17impbid2 195 . 2  |-  ( ( A  e.  On  /\  B  e.  On  /\  C  e.  On )  ->  (
( ( C  .o  A )  e.  ( C  .o  B )  /\  (/)  e.  C )  <-> 
( C  .o  A
)  e.  ( C  .o  B ) ) )
193, 18bitrd 244 1  |-  ( ( A  e.  On  /\  B  e.  On  /\  C  e.  On )  ->  (
( A  e.  B  /\  (/)  e.  C )  <-> 
( C  .o  A
)  e.  ( C  .o  B ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    /\ w3a 934    = wceq 1623    e. wcel 1684    =/= wne 2446   (/)c0 3455   Oncon0 4392  (class class class)co 5858    .o comu 6477
This theorem is referenced by:  omlimcl  6576  oneo  6579
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-rex 2549  df-reu 2550  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-1st 6122  df-2nd 6123  df-recs 6388  df-rdg 6423  df-oadd 6483  df-omul 6484
  Copyright terms: Public domain W3C validator