MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  omordlim Structured version   Unicode version

Theorem omordlim 6820
Description: Ordering involving the product of a limit ordinal. Proposition 8.23 of [TakeutiZaring] p. 64. (Contributed by NM, 25-Dec-2004.)
Assertion
Ref Expression
omordlim  |-  ( ( ( A  e.  On  /\  ( B  e.  D  /\  Lim  B ) )  /\  C  e.  ( A  .o  B ) )  ->  E. x  e.  B  C  e.  ( A  .o  x
) )
Distinct variable groups:    x, A    x, B    x, C
Allowed substitution hint:    D( x)

Proof of Theorem omordlim
StepHypRef Expression
1 omlim 6777 . . . 4  |-  ( ( A  e.  On  /\  ( B  e.  D  /\  Lim  B ) )  ->  ( A  .o  B )  =  U_ x  e.  B  ( A  .o  x ) )
21eleq2d 2503 . . 3  |-  ( ( A  e.  On  /\  ( B  e.  D  /\  Lim  B ) )  ->  ( C  e.  ( A  .o  B
)  <->  C  e.  U_ x  e.  B  ( A  .o  x ) ) )
3 eliun 4097 . . 3  |-  ( C  e.  U_ x  e.  B  ( A  .o  x )  <->  E. x  e.  B  C  e.  ( A  .o  x
) )
42, 3syl6bb 253 . 2  |-  ( ( A  e.  On  /\  ( B  e.  D  /\  Lim  B ) )  ->  ( C  e.  ( A  .o  B
)  <->  E. x  e.  B  C  e.  ( A  .o  x ) ) )
54biimpa 471 1  |-  ( ( ( A  e.  On  /\  ( B  e.  D  /\  Lim  B ) )  /\  C  e.  ( A  .o  B ) )  ->  E. x  e.  B  C  e.  ( A  .o  x
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359    e. wcel 1725   E.wrex 2706   U_ciun 4093   Oncon0 4581   Lim wlim 4582  (class class class)co 6081    .o comu 6722
This theorem is referenced by:  odi  6822  omass  6823  oaabs2  6888
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2417  ax-rep 4320  ax-sep 4330  ax-nul 4338  ax-pow 4377  ax-pr 4403  ax-un 4701
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2285  df-mo 2286  df-clab 2423  df-cleq 2429  df-clel 2432  df-nfc 2561  df-ne 2601  df-ral 2710  df-rex 2711  df-reu 2712  df-rab 2714  df-v 2958  df-sbc 3162  df-csb 3252  df-dif 3323  df-un 3325  df-in 3327  df-ss 3334  df-pss 3336  df-nul 3629  df-if 3740  df-pw 3801  df-sn 3820  df-pr 3821  df-tp 3822  df-op 3823  df-uni 4016  df-iun 4095  df-br 4213  df-opab 4267  df-mpt 4268  df-tr 4303  df-eprel 4494  df-id 4498  df-po 4503  df-so 4504  df-fr 4541  df-we 4543  df-ord 4584  df-on 4585  df-lim 4586  df-suc 4587  df-xp 4884  df-rel 4885  df-cnv 4886  df-co 4887  df-dm 4888  df-rn 4889  df-res 4890  df-ima 4891  df-iota 5418  df-fun 5456  df-fn 5457  df-f 5458  df-f1 5459  df-fo 5460  df-f1o 5461  df-fv 5462  df-ov 6084  df-oprab 6085  df-mpt2 6086  df-recs 6633  df-rdg 6668  df-omul 6729
  Copyright terms: Public domain W3C validator