MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  omsmolem Structured version   Unicode version

Theorem omsmolem 6898
Description: Lemma for omsmo 6899. (Contributed by NM, 30-Nov-2003.) (Revised by David Abernethy, 1-Jan-2014.)
Assertion
Ref Expression
omsmolem  |-  ( y  e.  om  ->  (
( ( A  C_  On  /\  F : om --> A )  /\  A. x  e.  om  ( F `  x )  e.  ( F `  suc  x ) )  -> 
( z  e.  y  ->  ( F `  z )  e.  ( F `  y ) ) ) )
Distinct variable groups:    y, z, A    x, y, z, F
Allowed substitution hint:    A( x)

Proof of Theorem omsmolem
Dummy variable  w is distinct from all other variables.
StepHypRef Expression
1 eleq2 2499 . . 3  |-  ( y  =  (/)  ->  ( z  e.  y  <->  z  e.  (/) ) )
2 fveq2 5730 . . . 4  |-  ( y  =  (/)  ->  ( F `
 y )  =  ( F `  (/) ) )
32eleq2d 2505 . . 3  |-  ( y  =  (/)  ->  ( ( F `  z )  e.  ( F `  y )  <->  ( F `  z )  e.  ( F `  (/) ) ) )
41, 3imbi12d 313 . 2  |-  ( y  =  (/)  ->  ( ( z  e.  y  -> 
( F `  z
)  e.  ( F `
 y ) )  <-> 
( z  e.  (/)  ->  ( F `  z
)  e.  ( F `
 (/) ) ) ) )
5 eleq2 2499 . . 3  |-  ( y  =  w  ->  (
z  e.  y  <->  z  e.  w ) )
6 fveq2 5730 . . . 4  |-  ( y  =  w  ->  ( F `  y )  =  ( F `  w ) )
76eleq2d 2505 . . 3  |-  ( y  =  w  ->  (
( F `  z
)  e.  ( F `
 y )  <->  ( F `  z )  e.  ( F `  w ) ) )
85, 7imbi12d 313 . 2  |-  ( y  =  w  ->  (
( z  e.  y  ->  ( F `  z )  e.  ( F `  y ) )  <->  ( z  e.  w  ->  ( F `  z )  e.  ( F `  w ) ) ) )
9 eleq2 2499 . . 3  |-  ( y  =  suc  w  -> 
( z  e.  y  <-> 
z  e.  suc  w
) )
10 fveq2 5730 . . . 4  |-  ( y  =  suc  w  -> 
( F `  y
)  =  ( F `
 suc  w )
)
1110eleq2d 2505 . . 3  |-  ( y  =  suc  w  -> 
( ( F `  z )  e.  ( F `  y )  <-> 
( F `  z
)  e.  ( F `
 suc  w )
) )
129, 11imbi12d 313 . 2  |-  ( y  =  suc  w  -> 
( ( z  e.  y  ->  ( F `  z )  e.  ( F `  y ) )  <->  ( z  e. 
suc  w  ->  ( F `  z )  e.  ( F `  suc  w ) ) ) )
13 noel 3634 . . . 4  |-  -.  z  e.  (/)
1413pm2.21i 126 . . 3  |-  ( z  e.  (/)  ->  ( F `  z )  e.  ( F `  (/) ) )
1514a1i 11 . 2  |-  ( ( ( A  C_  On  /\  F : om --> A )  /\  A. x  e. 
om  ( F `  x )  e.  ( F `  suc  x
) )  ->  (
z  e.  (/)  ->  ( F `  z )  e.  ( F `  (/) ) ) )
16 vex 2961 . . . . . 6  |-  z  e. 
_V
1716elsuc 4652 . . . . 5  |-  ( z  e.  suc  w  <->  ( z  e.  w  \/  z  =  w ) )
18 fveq2 5730 . . . . . . . . . . . 12  |-  ( x  =  w  ->  ( F `  x )  =  ( F `  w ) )
19 suceq 4648 . . . . . . . . . . . . 13  |-  ( x  =  w  ->  suc  x  =  suc  w )
2019fveq2d 5734 . . . . . . . . . . . 12  |-  ( x  =  w  ->  ( F `  suc  x )  =  ( F `  suc  w ) )
2118, 20eleq12d 2506 . . . . . . . . . . 11  |-  ( x  =  w  ->  (
( F `  x
)  e.  ( F `
 suc  x )  <->  ( F `  w )  e.  ( F `  suc  w ) ) )
2221rspccva 3053 . . . . . . . . . 10  |-  ( ( A. x  e.  om  ( F `  x )  e.  ( F `  suc  x )  /\  w  e.  om )  ->  ( F `  w )  e.  ( F `  suc  w ) )
2322adantll 696 . . . . . . . . 9  |-  ( ( ( ( A  C_  On  /\  F : om --> A )  /\  A. x  e.  om  ( F `  x )  e.  ( F `  suc  x ) )  /\  w  e.  om )  ->  ( F `  w
)  e.  ( F `
 suc  w )
)
24 peano2b 4863 . . . . . . . . . . . . 13  |-  ( w  e.  om  <->  suc  w  e. 
om )
25 ffvelrn 5870 . . . . . . . . . . . . 13  |-  ( ( F : om --> A  /\  suc  w  e.  om )  ->  ( F `  suc  w )  e.  A
)
2624, 25sylan2b 463 . . . . . . . . . . . 12  |-  ( ( F : om --> A  /\  w  e.  om )  ->  ( F `  suc  w )  e.  A
)
27 ssel 3344 . . . . . . . . . . . 12  |-  ( A 
C_  On  ->  ( ( F `  suc  w
)  e.  A  -> 
( F `  suc  w )  e.  On ) )
28 ontr1 4629 . . . . . . . . . . . . 13  |-  ( ( F `  suc  w
)  e.  On  ->  ( ( ( F `  z )  e.  ( F `  w )  /\  ( F `  w )  e.  ( F `  suc  w
) )  ->  ( F `  z )  e.  ( F `  suc  w ) ) )
2928exp3acom23 1382 . . . . . . . . . . . 12  |-  ( ( F `  suc  w
)  e.  On  ->  ( ( F `  w
)  e.  ( F `
 suc  w )  ->  ( ( F `  z )  e.  ( F `  w )  ->  ( F `  z )  e.  ( F `  suc  w
) ) ) )
3026, 27, 29syl56 33 . . . . . . . . . . 11  |-  ( A 
C_  On  ->  ( ( F : om --> A  /\  w  e.  om )  ->  ( ( F `  w )  e.  ( F `  suc  w
)  ->  ( ( F `  z )  e.  ( F `  w
)  ->  ( F `  z )  e.  ( F `  suc  w
) ) ) ) )
3130impl 605 . . . . . . . . . 10  |-  ( ( ( A  C_  On  /\  F : om --> A )  /\  w  e.  om )  ->  ( ( F `
 w )  e.  ( F `  suc  w )  ->  (
( F `  z
)  e.  ( F `
 w )  -> 
( F `  z
)  e.  ( F `
 suc  w )
) ) )
3231adantlr 697 . . . . . . . . 9  |-  ( ( ( ( A  C_  On  /\  F : om --> A )  /\  A. x  e.  om  ( F `  x )  e.  ( F `  suc  x ) )  /\  w  e.  om )  ->  ( ( F `  w )  e.  ( F `  suc  w
)  ->  ( ( F `  z )  e.  ( F `  w
)  ->  ( F `  z )  e.  ( F `  suc  w
) ) ) )
3323, 32mpd 15 . . . . . . . 8  |-  ( ( ( ( A  C_  On  /\  F : om --> A )  /\  A. x  e.  om  ( F `  x )  e.  ( F `  suc  x ) )  /\  w  e.  om )  ->  ( ( F `  z )  e.  ( F `  w )  ->  ( F `  z )  e.  ( F `  suc  w
) ) )
3433imim2d 51 . . . . . . 7  |-  ( ( ( ( A  C_  On  /\  F : om --> A )  /\  A. x  e.  om  ( F `  x )  e.  ( F `  suc  x ) )  /\  w  e.  om )  ->  ( ( z  e.  w  ->  ( F `  z )  e.  ( F `  w ) )  ->  ( z  e.  w  ->  ( F `
 z )  e.  ( F `  suc  w ) ) ) )
3534imp 420 . . . . . 6  |-  ( ( ( ( ( A 
C_  On  /\  F : om
--> A )  /\  A. x  e.  om  ( F `  x )  e.  ( F `  suc  x ) )  /\  w  e.  om )  /\  ( z  e.  w  ->  ( F `  z
)  e.  ( F `
 w ) ) )  ->  ( z  e.  w  ->  ( F `
 z )  e.  ( F `  suc  w ) ) )
36 fveq2 5730 . . . . . . . . . 10  |-  ( z  =  w  ->  ( F `  z )  =  ( F `  w ) )
3736eleq1d 2504 . . . . . . . . 9  |-  ( z  =  w  ->  (
( F `  z
)  e.  ( F `
 suc  w )  <->  ( F `  w )  e.  ( F `  suc  w ) ) )
3822, 37syl5ibrcom 215 . . . . . . . 8  |-  ( ( A. x  e.  om  ( F `  x )  e.  ( F `  suc  x )  /\  w  e.  om )  ->  (
z  =  w  -> 
( F `  z
)  e.  ( F `
 suc  w )
) )
3938adantll 696 . . . . . . 7  |-  ( ( ( ( A  C_  On  /\  F : om --> A )  /\  A. x  e.  om  ( F `  x )  e.  ( F `  suc  x ) )  /\  w  e.  om )  ->  ( z  =  w  ->  ( F `  z )  e.  ( F `  suc  w
) ) )
4039adantr 453 . . . . . 6  |-  ( ( ( ( ( A 
C_  On  /\  F : om
--> A )  /\  A. x  e.  om  ( F `  x )  e.  ( F `  suc  x ) )  /\  w  e.  om )  /\  ( z  e.  w  ->  ( F `  z
)  e.  ( F `
 w ) ) )  ->  ( z  =  w  ->  ( F `
 z )  e.  ( F `  suc  w ) ) )
4135, 40jaod 371 . . . . 5  |-  ( ( ( ( ( A 
C_  On  /\  F : om
--> A )  /\  A. x  e.  om  ( F `  x )  e.  ( F `  suc  x ) )  /\  w  e.  om )  /\  ( z  e.  w  ->  ( F `  z
)  e.  ( F `
 w ) ) )  ->  ( (
z  e.  w  \/  z  =  w )  ->  ( F `  z )  e.  ( F `  suc  w
) ) )
4217, 41syl5bi 210 . . . 4  |-  ( ( ( ( ( A 
C_  On  /\  F : om
--> A )  /\  A. x  e.  om  ( F `  x )  e.  ( F `  suc  x ) )  /\  w  e.  om )  /\  ( z  e.  w  ->  ( F `  z
)  e.  ( F `
 w ) ) )  ->  ( z  e.  suc  w  ->  ( F `  z )  e.  ( F `  suc  w ) ) )
4342exp31 589 . . 3  |-  ( ( ( A  C_  On  /\  F : om --> A )  /\  A. x  e. 
om  ( F `  x )  e.  ( F `  suc  x
) )  ->  (
w  e.  om  ->  ( ( z  e.  w  ->  ( F `  z
)  e.  ( F `
 w ) )  ->  ( z  e. 
suc  w  ->  ( F `  z )  e.  ( F `  suc  w ) ) ) ) )
4443com12 30 . 2  |-  ( w  e.  om  ->  (
( ( A  C_  On  /\  F : om --> A )  /\  A. x  e.  om  ( F `  x )  e.  ( F `  suc  x ) )  -> 
( ( z  e.  w  ->  ( F `  z )  e.  ( F `  w ) )  ->  ( z  e.  suc  w  ->  ( F `  z )  e.  ( F `  suc  w ) ) ) ) )
454, 8, 12, 15, 44finds2 4875 1  |-  ( y  e.  om  ->  (
( ( A  C_  On  /\  F : om --> A )  /\  A. x  e.  om  ( F `  x )  e.  ( F `  suc  x ) )  -> 
( z  e.  y  ->  ( F `  z )  e.  ( F `  y ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    \/ wo 359    /\ wa 360    = wceq 1653    e. wcel 1726   A.wral 2707    C_ wss 3322   (/)c0 3630   Oncon0 4583   suc csuc 4585   omcom 4847   -->wf 5452   ` cfv 5456
This theorem is referenced by:  omsmo  6899
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-13 1728  ax-14 1730  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2419  ax-sep 4332  ax-nul 4340  ax-pr 4405  ax-un 4703
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 938  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2287  df-mo 2288  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-ral 2712  df-rex 2713  df-rab 2716  df-v 2960  df-sbc 3164  df-dif 3325  df-un 3327  df-in 3329  df-ss 3336  df-pss 3338  df-nul 3631  df-if 3742  df-pw 3803  df-sn 3822  df-pr 3823  df-tp 3824  df-op 3825  df-uni 4018  df-br 4215  df-opab 4269  df-tr 4305  df-eprel 4496  df-id 4500  df-po 4505  df-so 4506  df-fr 4543  df-we 4545  df-ord 4586  df-on 4587  df-lim 4588  df-suc 4589  df-om 4848  df-xp 4886  df-rel 4887  df-cnv 4888  df-co 4889  df-dm 4890  df-rn 4891  df-iota 5420  df-fun 5458  df-fn 5459  df-f 5460  df-fv 5464
  Copyright terms: Public domain W3C validator