MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  omssnlim Unicode version

Theorem omssnlim 4670
Description: The class of natural numbers is a subclass of the class of non-limit ordinal numbers. Exercise 4 of [TakeutiZaring] p. 42. (Contributed by NM, 2-Nov-2004.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
Assertion
Ref Expression
omssnlim  |-  om  C_  { x  e.  On  |  -.  Lim  x }

Proof of Theorem omssnlim
StepHypRef Expression
1 omsson 4660 . 2  |-  om  C_  On
2 nnlim 4669 . . 3  |-  ( x  e.  om  ->  -.  Lim  x )
32rgen 2608 . 2  |-  A. x  e.  om  -.  Lim  x
4 ssrab 3251 . 2  |-  ( om  C_  { x  e.  On  |  -.  Lim  x }  <->  ( om  C_  On  /\  A. x  e.  om  -.  Lim  x ) )
51, 3, 4mpbir2an 886 1  |-  om  C_  { x  e.  On  |  -.  Lim  x }
Colors of variables: wff set class
Syntax hints:   -. wn 3   A.wral 2543   {crab 2547    C_ wss 3152   Oncon0 4392   Lim wlim 4393   omcom 4656
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-sep 4141  ax-nul 4149  ax-pr 4214  ax-un 4512
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-rex 2549  df-rab 2552  df-v 2790  df-sbc 2992  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-br 4024  df-opab 4078  df-tr 4114  df-eprel 4305  df-po 4314  df-so 4315  df-fr 4352  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657
  Copyright terms: Public domain W3C validator