MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ondomon Structured version   Unicode version

Theorem ondomon 8440
Description: The collection of ordinal numbers dominated by a set is an ordinal number. (In general, not all collections of ordinal numbers are ordinal.) Theorem 56 of [Suppes] p. 227. This theorem can be proved (with a longer proof) without the Axiom of Choice; see hartogs 7515. (Contributed by NM, 7-Nov-2003.) (Proof modification is discouraged.)
Assertion
Ref Expression
ondomon  |-  ( A  e.  V  ->  { x  e.  On  |  x  ~<_  A }  e.  On )
Distinct variable group:    x, A
Allowed substitution hint:    V( x)

Proof of Theorem ondomon
Dummy variables  y 
z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 onelon 4608 . . . . . . . . . . . 12  |-  ( ( z  e.  On  /\  y  e.  z )  ->  y  e.  On )
2 vex 2961 . . . . . . . . . . . . 13  |-  z  e. 
_V
3 onelss 4625 . . . . . . . . . . . . . 14  |-  ( z  e.  On  ->  (
y  e.  z  -> 
y  C_  z )
)
43imp 420 . . . . . . . . . . . . 13  |-  ( ( z  e.  On  /\  y  e.  z )  ->  y  C_  z )
5 ssdomg 7155 . . . . . . . . . . . . 13  |-  ( z  e.  _V  ->  (
y  C_  z  ->  y  ~<_  z ) )
62, 4, 5mpsyl 62 . . . . . . . . . . . 12  |-  ( ( z  e.  On  /\  y  e.  z )  ->  y  ~<_  z )
71, 6jca 520 . . . . . . . . . . 11  |-  ( ( z  e.  On  /\  y  e.  z )  ->  ( y  e.  On  /\  y  ~<_  z ) )
8 domtr 7162 . . . . . . . . . . . . 13  |-  ( ( y  ~<_  z  /\  z  ~<_  A )  ->  y  ~<_  A )
98anim2i 554 . . . . . . . . . . . 12  |-  ( ( y  e.  On  /\  ( y  ~<_  z  /\  z  ~<_  A ) )  ->  ( y  e.  On  /\  y  ~<_  A ) )
109anassrs 631 . . . . . . . . . . 11  |-  ( ( ( y  e.  On  /\  y  ~<_  z )  /\  z  ~<_  A )  -> 
( y  e.  On  /\  y  ~<_  A ) )
117, 10sylan 459 . . . . . . . . . 10  |-  ( ( ( z  e.  On  /\  y  e.  z )  /\  z  ~<_  A )  ->  ( y  e.  On  /\  y  ~<_  A ) )
1211exp31 589 . . . . . . . . 9  |-  ( z  e.  On  ->  (
y  e.  z  -> 
( z  ~<_  A  -> 
( y  e.  On  /\  y  ~<_  A ) ) ) )
1312com12 30 . . . . . . . 8  |-  ( y  e.  z  ->  (
z  e.  On  ->  ( z  ~<_  A  ->  (
y  e.  On  /\  y  ~<_  A ) ) ) )
1413imp3a 422 . . . . . . 7  |-  ( y  e.  z  ->  (
( z  e.  On  /\  z  ~<_  A )  -> 
( y  e.  On  /\  y  ~<_  A ) ) )
15 breq1 4217 . . . . . . . 8  |-  ( x  =  z  ->  (
x  ~<_  A  <->  z  ~<_  A ) )
1615elrab 3094 . . . . . . 7  |-  ( z  e.  { x  e.  On  |  x  ~<_  A }  <->  ( z  e.  On  /\  z  ~<_  A ) )
17 breq1 4217 . . . . . . . 8  |-  ( x  =  y  ->  (
x  ~<_  A  <->  y  ~<_  A ) )
1817elrab 3094 . . . . . . 7  |-  ( y  e.  { x  e.  On  |  x  ~<_  A }  <->  ( y  e.  On  /\  y  ~<_  A ) )
1914, 16, 183imtr4g 263 . . . . . 6  |-  ( y  e.  z  ->  (
z  e.  { x  e.  On  |  x  ~<_  A }  ->  y  e.  { x  e.  On  |  x  ~<_  A } ) )
2019imp 420 . . . . 5  |-  ( ( y  e.  z  /\  z  e.  { x  e.  On  |  x  ~<_  A } )  ->  y  e.  { x  e.  On  |  x  ~<_  A }
)
2120gen2 1557 . . . 4  |-  A. y A. z ( ( y  e.  z  /\  z  e.  { x  e.  On  |  x  ~<_  A }
)  ->  y  e.  { x  e.  On  |  x  ~<_  A } )
22 dftr2 4306 . . . 4  |-  ( Tr 
{ x  e.  On  |  x  ~<_  A }  <->  A. y A. z ( ( y  e.  z  /\  z  e.  {
x  e.  On  |  x  ~<_  A } )  ->  y  e.  {
x  e.  On  |  x  ~<_  A } ) )
2321, 22mpbir 202 . . 3  |-  Tr  {
x  e.  On  |  x  ~<_  A }
24 ssrab2 3430 . . 3  |-  { x  e.  On  |  x  ~<_  A }  C_  On
25 ordon 4765 . . 3  |-  Ord  On
26 trssord 4600 . . 3  |-  ( ( Tr  { x  e.  On  |  x  ~<_  A }  /\  { x  e.  On  |  x  ~<_  A }  C_  On  /\  Ord  On )  ->  Ord  { x  e.  On  |  x  ~<_  A } )
2723, 24, 25, 26mp3an 1280 . 2  |-  Ord  {
x  e.  On  |  x  ~<_  A }
28 elex 2966 . . . . . 6  |-  ( A  e.  V  ->  A  e.  _V )
29 canth2g 7263 . . . . . . . . 9  |-  ( A  e.  _V  ->  A  ~<  ~P A )
30 domsdomtr 7244 . . . . . . . . 9  |-  ( ( x  ~<_  A  /\  A  ~<  ~P A )  ->  x  ~<  ~P A )
3129, 30sylan2 462 . . . . . . . 8  |-  ( ( x  ~<_  A  /\  A  e.  _V )  ->  x  ~<  ~P A )
3231expcom 426 . . . . . . 7  |-  ( A  e.  _V  ->  (
x  ~<_  A  ->  x  ~<  ~P A ) )
3332ralrimivw 2792 . . . . . 6  |-  ( A  e.  _V  ->  A. x  e.  On  ( x  ~<_  A  ->  x  ~<  ~P A
) )
3428, 33syl 16 . . . . 5  |-  ( A  e.  V  ->  A. x  e.  On  ( x  ~<_  A  ->  x  ~<  ~P A
) )
35 ss2rab 3421 . . . . 5  |-  ( { x  e.  On  |  x  ~<_  A }  C_  { x  e.  On  |  x  ~<  ~P A }  <->  A. x  e.  On  (
x  ~<_  A  ->  x  ~<  ~P A ) )
3634, 35sylibr 205 . . . 4  |-  ( A  e.  V  ->  { x  e.  On  |  x  ~<_  A }  C_  { x  e.  On  |  x  ~<  ~P A } )
37 pwexg 4385 . . . . . 6  |-  ( A  e.  V  ->  ~P A  e.  _V )
38 numth3 8352 . . . . . 6  |-  ( ~P A  e.  _V  ->  ~P A  e.  dom  card )
39 cardval2 7880 . . . . . 6  |-  ( ~P A  e.  dom  card  -> 
( card `  ~P A )  =  { x  e.  On  |  x  ~<  ~P A } )
4037, 38, 393syl 19 . . . . 5  |-  ( A  e.  V  ->  ( card `  ~P A )  =  { x  e.  On  |  x  ~<  ~P A } )
41 fvex 5744 . . . . 5  |-  ( card `  ~P A )  e. 
_V
4240, 41syl6eqelr 2527 . . . 4  |-  ( A  e.  V  ->  { x  e.  On  |  x  ~<  ~P A }  e.  _V )
43 ssexg 4351 . . . 4  |-  ( ( { x  e.  On  |  x  ~<_  A }  C_ 
{ x  e.  On  |  x  ~<  ~P A }  /\  { x  e.  On  |  x  ~<  ~P A }  e.  _V )  ->  { x  e.  On  |  x  ~<_  A }  e.  _V )
4436, 42, 43syl2anc 644 . . 3  |-  ( A  e.  V  ->  { x  e.  On  |  x  ~<_  A }  e.  _V )
45 elong 4591 . . 3  |-  ( { x  e.  On  |  x  ~<_  A }  e.  _V  ->  ( { x  e.  On  |  x  ~<_  A }  e.  On  <->  Ord  { x  e.  On  |  x  ~<_  A } ) )
4644, 45syl 16 . 2  |-  ( A  e.  V  ->  ( { x  e.  On  |  x  ~<_  A }  e.  On  <->  Ord  { x  e.  On  |  x  ~<_  A } ) )
4727, 46mpbiri 226 1  |-  ( A  e.  V  ->  { x  e.  On  |  x  ~<_  A }  e.  On )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 178    /\ wa 360   A.wal 1550    = wceq 1653    e. wcel 1726   A.wral 2707   {crab 2711   _Vcvv 2958    C_ wss 3322   ~Pcpw 3801   class class class wbr 4214   Tr wtr 4304   Ord word 4582   Oncon0 4583   dom cdm 4880   ` cfv 5456    ~<_ cdom 7109    ~< csdm 7110   cardccrd 7824
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-13 1728  ax-14 1730  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2419  ax-rep 4322  ax-sep 4332  ax-nul 4340  ax-pow 4379  ax-pr 4405  ax-un 4703  ax-ac2 8345
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 938  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2287  df-mo 2288  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-ral 2712  df-rex 2713  df-reu 2714  df-rmo 2715  df-rab 2716  df-v 2960  df-sbc 3164  df-csb 3254  df-dif 3325  df-un 3327  df-in 3329  df-ss 3336  df-pss 3338  df-nul 3631  df-if 3742  df-pw 3803  df-sn 3822  df-pr 3823  df-tp 3824  df-op 3825  df-uni 4018  df-int 4053  df-iun 4097  df-br 4215  df-opab 4269  df-mpt 4270  df-tr 4305  df-eprel 4496  df-id 4500  df-po 4505  df-so 4506  df-fr 4543  df-se 4544  df-we 4545  df-ord 4586  df-on 4587  df-suc 4589  df-xp 4886  df-rel 4887  df-cnv 4888  df-co 4889  df-dm 4890  df-rn 4891  df-res 4892  df-ima 4893  df-iota 5420  df-fun 5458  df-fn 5459  df-f 5460  df-f1 5461  df-fo 5462  df-f1o 5463  df-fv 5464  df-isom 5465  df-riota 6551  df-recs 6635  df-er 6907  df-en 7112  df-dom 7113  df-sdom 7114  df-card 7828  df-ac 7999
  Copyright terms: Public domain W3C validator