MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  onelini Unicode version

Theorem onelini 4607
Description: An element of an ordinal number equals the intersection with it. (Contributed by NM, 11-Jun-1994.)
Hypothesis
Ref Expression
on.1  |-  A  e.  On
Assertion
Ref Expression
onelini  |-  ( B  e.  A  ->  B  =  ( B  i^i  A ) )

Proof of Theorem onelini
StepHypRef Expression
1 on.1 . . 3  |-  A  e.  On
21onelssi 4604 . 2  |-  ( B  e.  A  ->  B  C_  A )
3 dfss 3253 . 2  |-  ( B 
C_  A  <->  B  =  ( B  i^i  A ) )
42, 3sylib 188 1  |-  ( B  e.  A  ->  B  =  ( B  i^i  A ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1647    e. wcel 1715    i^i cin 3237    C_ wss 3238   Oncon0 4495
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1551  ax-5 1562  ax-17 1621  ax-9 1659  ax-8 1680  ax-6 1734  ax-7 1739  ax-11 1751  ax-12 1937  ax-ext 2347
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-tru 1324  df-ex 1547  df-nf 1550  df-sb 1654  df-clab 2353  df-cleq 2359  df-clel 2362  df-nfc 2491  df-ral 2633  df-rex 2634  df-v 2875  df-in 3245  df-ss 3252  df-uni 3930  df-tr 4216  df-po 4417  df-so 4418  df-fr 4455  df-we 4457  df-ord 4498  df-on 4499
  Copyright terms: Public domain W3C validator