MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  onfr Unicode version

Theorem onfr 4431
Description: The ordinal class is well-founded. This lemma is needed for ordon 4574 in order to eliminate the need for the Axiom of Regularity. (Contributed by NM, 17-May-1994.)
Assertion
Ref Expression
onfr  |-  _E  Fr  On

Proof of Theorem onfr
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dfepfr 4378 . 2  |-  (  _E  Fr  On  <->  A. x
( ( x  C_  On  /\  x  =/=  (/) )  ->  E. z  e.  x  ( x  i^i  z
)  =  (/) ) )
2 n0 3464 . . . 4  |-  ( x  =/=  (/)  <->  E. y  y  e.  x )
3 ineq2 3364 . . . . . . . . . 10  |-  ( z  =  y  ->  (
x  i^i  z )  =  ( x  i^i  y ) )
43eqeq1d 2291 . . . . . . . . 9  |-  ( z  =  y  ->  (
( x  i^i  z
)  =  (/)  <->  ( x  i^i  y )  =  (/) ) )
54rspcev 2884 . . . . . . . 8  |-  ( ( y  e.  x  /\  ( x  i^i  y
)  =  (/) )  ->  E. z  e.  x  ( x  i^i  z
)  =  (/) )
65adantll 694 . . . . . . 7  |-  ( ( ( x  C_  On  /\  y  e.  x )  /\  ( x  i^i  y )  =  (/) )  ->  E. z  e.  x  ( x  i^i  z
)  =  (/) )
7 ssel2 3175 . . . . . . . . . . . 12  |-  ( ( x  C_  On  /\  y  e.  x )  ->  y  e.  On )
8 eloni 4402 . . . . . . . . . . . 12  |-  ( y  e.  On  ->  Ord  y )
97, 8syl 15 . . . . . . . . . . 11  |-  ( ( x  C_  On  /\  y  e.  x )  ->  Ord  y )
10 ordfr 4407 . . . . . . . . . . 11  |-  ( Ord  y  ->  _E  Fr  y )
119, 10syl 15 . . . . . . . . . 10  |-  ( ( x  C_  On  /\  y  e.  x )  ->  _E  Fr  y )
12 inss2 3390 . . . . . . . . . . 11  |-  ( x  i^i  y )  C_  y
13 vex 2791 . . . . . . . . . . . . 13  |-  x  e. 
_V
1413inex1 4155 . . . . . . . . . . . 12  |-  ( x  i^i  y )  e. 
_V
1514epfrc 4379 . . . . . . . . . . 11  |-  ( (  _E  Fr  y  /\  ( x  i^i  y
)  C_  y  /\  ( x  i^i  y
)  =/=  (/) )  ->  E. z  e.  (
x  i^i  y )
( ( x  i^i  y )  i^i  z
)  =  (/) )
1612, 15mp3an2 1265 . . . . . . . . . 10  |-  ( (  _E  Fr  y  /\  ( x  i^i  y
)  =/=  (/) )  ->  E. z  e.  (
x  i^i  y )
( ( x  i^i  y )  i^i  z
)  =  (/) )
1711, 16sylan 457 . . . . . . . . 9  |-  ( ( ( x  C_  On  /\  y  e.  x )  /\  ( x  i^i  y )  =/=  (/) )  ->  E. z  e.  (
x  i^i  y )
( ( x  i^i  y )  i^i  z
)  =  (/) )
18 inass 3379 . . . . . . . . . . . . 13  |-  ( ( x  i^i  y )  i^i  z )  =  ( x  i^i  (
y  i^i  z )
)
199adantr 451 . . . . . . . . . . . . . . . 16  |-  ( ( ( x  C_  On  /\  y  e.  x )  /\  z  e.  ( x  i^i  y ) )  ->  Ord  y )
20 simpr 447 . . . . . . . . . . . . . . . . 17  |-  ( ( ( x  C_  On  /\  y  e.  x )  /\  z  e.  ( x  i^i  y ) )  ->  z  e.  ( x  i^i  y
) )
2112, 20sseldi 3178 . . . . . . . . . . . . . . . 16  |-  ( ( ( x  C_  On  /\  y  e.  x )  /\  z  e.  ( x  i^i  y ) )  ->  z  e.  y )
22 ordelss 4408 . . . . . . . . . . . . . . . 16  |-  ( ( Ord  y  /\  z  e.  y )  ->  z  C_  y )
2319, 21, 22syl2anc 642 . . . . . . . . . . . . . . 15  |-  ( ( ( x  C_  On  /\  y  e.  x )  /\  z  e.  ( x  i^i  y ) )  ->  z  C_  y )
24 dfss1 3373 . . . . . . . . . . . . . . 15  |-  ( z 
C_  y  <->  ( y  i^i  z )  =  z )
2523, 24sylib 188 . . . . . . . . . . . . . 14  |-  ( ( ( x  C_  On  /\  y  e.  x )  /\  z  e.  ( x  i^i  y ) )  ->  ( y  i^i  z )  =  z )
2625ineq2d 3370 . . . . . . . . . . . . 13  |-  ( ( ( x  C_  On  /\  y  e.  x )  /\  z  e.  ( x  i^i  y ) )  ->  ( x  i^i  ( y  i^i  z
) )  =  ( x  i^i  z ) )
2718, 26syl5eq 2327 . . . . . . . . . . . 12  |-  ( ( ( x  C_  On  /\  y  e.  x )  /\  z  e.  ( x  i^i  y ) )  ->  ( (
x  i^i  y )  i^i  z )  =  ( x  i^i  z ) )
2827eqeq1d 2291 . . . . . . . . . . 11  |-  ( ( ( x  C_  On  /\  y  e.  x )  /\  z  e.  ( x  i^i  y ) )  ->  ( (
( x  i^i  y
)  i^i  z )  =  (/)  <->  ( x  i^i  z )  =  (/) ) )
2928rexbidva 2560 . . . . . . . . . 10  |-  ( ( x  C_  On  /\  y  e.  x )  ->  ( E. z  e.  (
x  i^i  y )
( ( x  i^i  y )  i^i  z
)  =  (/)  <->  E. z  e.  ( x  i^i  y
) ( x  i^i  z )  =  (/) ) )
3029adantr 451 . . . . . . . . 9  |-  ( ( ( x  C_  On  /\  y  e.  x )  /\  ( x  i^i  y )  =/=  (/) )  -> 
( E. z  e.  ( x  i^i  y
) ( ( x  i^i  y )  i^i  z )  =  (/)  <->  E. z  e.  ( x  i^i  y ) ( x  i^i  z )  =  (/) ) )
3117, 30mpbid 201 . . . . . . . 8  |-  ( ( ( x  C_  On  /\  y  e.  x )  /\  ( x  i^i  y )  =/=  (/) )  ->  E. z  e.  (
x  i^i  y )
( x  i^i  z
)  =  (/) )
32 inss1 3389 . . . . . . . . 9  |-  ( x  i^i  y )  C_  x
33 ssrexv 3238 . . . . . . . . 9  |-  ( ( x  i^i  y ) 
C_  x  ->  ( E. z  e.  (
x  i^i  y )
( x  i^i  z
)  =  (/)  ->  E. z  e.  x  ( x  i^i  z )  =  (/) ) )
3432, 33ax-mp 8 . . . . . . . 8  |-  ( E. z  e.  ( x  i^i  y ) ( x  i^i  z )  =  (/)  ->  E. z  e.  x  ( x  i^i  z )  =  (/) )
3531, 34syl 15 . . . . . . 7  |-  ( ( ( x  C_  On  /\  y  e.  x )  /\  ( x  i^i  y )  =/=  (/) )  ->  E. z  e.  x  ( x  i^i  z
)  =  (/) )
366, 35pm2.61dane 2524 . . . . . 6  |-  ( ( x  C_  On  /\  y  e.  x )  ->  E. z  e.  x  ( x  i^i  z )  =  (/) )
3736ex 423 . . . . 5  |-  ( x 
C_  On  ->  ( y  e.  x  ->  E. z  e.  x  ( x  i^i  z )  =  (/) ) )
3837exlimdv 1664 . . . 4  |-  ( x 
C_  On  ->  ( E. y  y  e.  x  ->  E. z  e.  x  ( x  i^i  z
)  =  (/) ) )
392, 38syl5bi 208 . . 3  |-  ( x 
C_  On  ->  ( x  =/=  (/)  ->  E. z  e.  x  ( x  i^i  z )  =  (/) ) )
4039imp 418 . 2  |-  ( ( x  C_  On  /\  x  =/=  (/) )  ->  E. z  e.  x  ( x  i^i  z )  =  (/) )
411, 40mpgbir 1537 1  |-  _E  Fr  On
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358   E.wex 1528    = wceq 1623    e. wcel 1684    =/= wne 2446   E.wrex 2544    i^i cin 3151    C_ wss 3152   (/)c0 3455    _E cep 4303    Fr wfr 4349   Ord word 4391   Oncon0 4392
This theorem is referenced by:  ordon  4574
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-sep 4141  ax-nul 4149  ax-pr 4214
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-rex 2549  df-rab 2552  df-v 2790  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-sn 3646  df-pr 3647  df-op 3649  df-uni 3828  df-br 4024  df-opab 4078  df-tr 4114  df-eprel 4305  df-po 4314  df-so 4315  df-fr 4352  df-we 4354  df-ord 4395  df-on 4396
  Copyright terms: Public domain W3C validator