Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  onfrALT Unicode version

Theorem onfrALT 28613
Description: The epsilon relation is foundational on the class of ordinal numbers. onfrALT 28613 is an alternate proof of onfr 4447. onfrALTVD 28983 is the Virtual Deduction proof from which onfrALT 28613 is derived. The Virtual Deduction proof mirrors the working proof of onfr 4447 which is the main part of the proof of Theorem 7.12 of the first edition of TakeutiZaring. The proof of the corresponding Proposition 7.12 of [TakeutiZaring] p. 38 (second edition) does not contain the working proof equivalent of onfrALTVD 28983. This theorem does not rely on the Axiom of Regularity. (Contributed by Alan Sare, 22-Jul-2012.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
onfrALT  |-  _E  Fr  On

Proof of Theorem onfrALT
Dummy variables  x  a  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dfepfr 4394 . 2  |-  (  _E  Fr  On  <->  A. a
( ( a  C_  On  /\  a  =/=  (/) )  ->  E. y  e.  a 
( a  i^i  y
)  =  (/) ) )
2 simpr 447 . . 3  |-  ( ( a  C_  On  /\  a  =/=  (/) )  ->  a  =/=  (/) )
3 n0 3477 . . . 4  |-  ( a  =/=  (/)  <->  E. x  x  e.  a )
4 onfrALTlem1 28612 . . . . . . 7  |-  ( ( a  C_  On  /\  a  =/=  (/) )  ->  (
( x  e.  a  /\  ( a  i^i  x )  =  (/) )  ->  E. y  e.  a  ( a  i^i  y
)  =  (/) ) )
54exp3a 425 . . . . . 6  |-  ( ( a  C_  On  /\  a  =/=  (/) )  ->  (
x  e.  a  -> 
( ( a  i^i  x )  =  (/)  ->  E. y  e.  a  ( a  i^i  y
)  =  (/) ) ) )
6 onfrALTlem2 28610 . . . . . . 7  |-  ( ( a  C_  On  /\  a  =/=  (/) )  ->  (
( x  e.  a  /\  -.  ( a  i^i  x )  =  (/) )  ->  E. y  e.  a  ( a  i^i  y )  =  (/) ) )
76exp3a 425 . . . . . 6  |-  ( ( a  C_  On  /\  a  =/=  (/) )  ->  (
x  e.  a  -> 
( -.  ( a  i^i  x )  =  (/)  ->  E. y  e.  a  ( a  i^i  y
)  =  (/) ) ) )
8 pm2.61 163 . . . . . 6  |-  ( ( ( a  i^i  x
)  =  (/)  ->  E. y  e.  a  ( a  i^i  y )  =  (/) )  ->  ( ( -.  ( a  i^i  x
)  =  (/)  ->  E. y  e.  a  ( a  i^i  y )  =  (/) )  ->  E. y  e.  a  ( a  i^i  y
)  =  (/) ) )
95, 7, 8ee22 1352 . . . . 5  |-  ( ( a  C_  On  /\  a  =/=  (/) )  ->  (
x  e.  a  ->  E. y  e.  a 
( a  i^i  y
)  =  (/) ) )
109exlimdv 1626 . . . 4  |-  ( ( a  C_  On  /\  a  =/=  (/) )  ->  ( E. x  x  e.  a  ->  E. y  e.  a  ( a  i^i  y
)  =  (/) ) )
113, 10syl5bi 208 . . 3  |-  ( ( a  C_  On  /\  a  =/=  (/) )  ->  (
a  =/=  (/)  ->  E. y  e.  a  ( a  i^i  y )  =  (/) ) )
122, 11mpd 14 . 2  |-  ( ( a  C_  On  /\  a  =/=  (/) )  ->  E. y  e.  a  ( a  i^i  y )  =  (/) )
131, 12mpgbir 1540 1  |-  _E  Fr  On
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 358   E.wex 1531    = wceq 1632    =/= wne 2459   E.wrex 2557    i^i cin 3164    C_ wss 3165   (/)c0 3468    _E cep 4319    Fr wfr 4365   Oncon0 4408
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-sep 4157  ax-nul 4165  ax-pr 4230
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-ral 2561  df-rex 2562  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3469  df-if 3579  df-sn 3659  df-pr 3660  df-op 3662  df-uni 3844  df-br 4040  df-opab 4094  df-tr 4130  df-eprel 4321  df-po 4330  df-so 4331  df-fr 4368  df-we 4370  df-ord 4411  df-on 4412
  Copyright terms: Public domain W3C validator