Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  onfrALTlem1VD Structured version   Unicode version

Theorem onfrALTlem1VD 29076
Description: Virtual deduction proof of onfrALTlem1 28708. The following User's Proof is a Virtual Deduction proof completed automatically by the tools program completeusersproof.cmd, which invokes Mel O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant. onfrALTlem1 28708 is onfrALTlem1VD 29076 without virtual deductions and was automatically derived from onfrALTlem1VD 29076.
1::  |-  (. ( a  C_  On  /\  a  =/=  (/) ) ,. ( x  e.  a  /\  ( a  i^i  x )  =  (/) )  ->.  ( x  e.  a  /\  ( a  i^i  x )  =  (/) ) ).
2:1:  |-  (. ( a  C_  On  /\  a  =/=  (/) ) ,. ( x  e.  a  /\  ( a  i^i  x )  =  (/) )  ->.  E. x ( x  e.  a  /\  ( a  i^i  x )  =  (/) ) ).
3:2:  |-  (. ( a  C_  On  /\  a  =/=  (/) ) ,. ( x  e.  a  /\  ( a  i^i  x )  =  (/) )  ->.  E. y [ y  /  x ] ( x  e.  a  /\  ( a  i^i  x )  =  (/) )  ).
4::  |-  ( [ y  /  x ] ( x  e.  a  /\  ( a  i^i  x )  =  (/)  )  <->  ( y  e.  a  /\  ( a  i^i  y )  =  (/) ) )
5:4:  |-  A. y ( [ y  /  x ] ( x  e.  a  /\  ( a  i^i  x )  =  (/) )  <->  ( y  e.  a  /\  ( a  i^i  y )  =  (/) ) )
6:5:  |-  ( E. y [ y  /  x ] ( x  e.  a  /\  ( a  i^i  x )  =  (/) )  <->  E. y ( y  e.  a  /\  ( a  i^i  y )  =  (/) ) )
7:3,6:  |-  (. ( a  C_  On  /\  a  =/=  (/) ) ,. ( x  e.  a  /\  ( a  i^i  x )  =  (/) )  ->.  E. y ( y  e.  a  /\  ( a  i^i  y )  =  (/) ) ).
8::  |-  ( E. y  e.  a ( a  i^i  y )  =  (/)  <->  E. y (  y  e.  a  /\  ( a  i^i  y )  =  (/) ) )
qed:7,8:  |-  (. ( a  C_  On  /\  a  =/=  (/) ) ,. ( x  e.  a  /\  ( a  i^i  x )  =  (/) )  ->.  E. y  e.  a ( a  i^i  y )  =  (/) ).
(Contributed by Alan Sare, 22-Jul-2012.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
onfrALTlem1VD  |-  (. (
a  C_  On  /\  a  =/=  (/) ) ,. (
x  e.  a  /\  ( a  i^i  x
)  =  (/) )  ->.  E. y  e.  a  ( a  i^i  y )  =  (/) ).
Distinct variable group:    x, a, y

Proof of Theorem onfrALTlem1VD
StepHypRef Expression
1 idn2 28788 . . . . 5  |-  (. (
a  C_  On  /\  a  =/=  (/) ) ,. (
x  e.  a  /\  ( a  i^i  x
)  =  (/) )  ->.  ( x  e.  a  /\  (
a  i^i  x )  =  (/) ) ).
2 19.8a 1763 . . . . 5  |-  ( ( x  e.  a  /\  ( a  i^i  x
)  =  (/) )  ->  E. x ( x  e.  a  /\  ( a  i^i  x )  =  (/) ) )
31, 2e2 28806 . . . 4  |-  (. (
a  C_  On  /\  a  =/=  (/) ) ,. (
x  e.  a  /\  ( a  i^i  x
)  =  (/) )  ->.  E. x
( x  e.  a  /\  ( a  i^i  x )  =  (/) ) ).
4 cbvexsv 28707 . . . . 5  |-  ( E. x ( x  e.  a  /\  ( a  i^i  x )  =  (/) )  <->  E. y [ y  /  x ] ( x  e.  a  /\  ( a  i^i  x
)  =  (/) ) )
54biimpi 188 . . . 4  |-  ( E. x ( x  e.  a  /\  ( a  i^i  x )  =  (/) )  ->  E. y [ y  /  x ] ( x  e.  a  /\  ( a  i^i  x )  =  (/) ) )
63, 5e2 28806 . . 3  |-  (. (
a  C_  On  /\  a  =/=  (/) ) ,. (
x  e.  a  /\  ( a  i^i  x
)  =  (/) )  ->.  E. y [ y  /  x ] ( x  e.  a  /\  ( a  i^i  x )  =  (/) ) ).
7 sbsbc 3167 . . . . . 6  |-  ( [ y  /  x ]
( x  e.  a  /\  ( a  i^i  x )  =  (/) ) 
<-> 
[. y  /  x ]. ( x  e.  a  /\  ( a  i^i  x )  =  (/) ) )
8 onfrALTlem4 28703 . . . . . 6  |-  ( [. y  /  x ]. (
x  e.  a  /\  ( a  i^i  x
)  =  (/) )  <->  ( y  e.  a  /\  (
a  i^i  y )  =  (/) ) )
97, 8bitri 242 . . . . 5  |-  ( [ y  /  x ]
( x  e.  a  /\  ( a  i^i  x )  =  (/) ) 
<->  ( y  e.  a  /\  ( a  i^i  y )  =  (/) ) )
109ax-gen 1556 . . . 4  |-  A. y
( [ y  /  x ] ( x  e.  a  /\  ( a  i^i  x )  =  (/) )  <->  ( y  e.  a  /\  ( a  i^i  y )  =  (/) ) )
11 exbi 1592 . . . 4  |-  ( A. y ( [ y  /  x ] ( x  e.  a  /\  ( a  i^i  x
)  =  (/) )  <->  ( y  e.  a  /\  (
a  i^i  y )  =  (/) ) )  -> 
( E. y [ y  /  x ]
( x  e.  a  /\  ( a  i^i  x )  =  (/) ) 
<->  E. y ( y  e.  a  /\  (
a  i^i  y )  =  (/) ) ) )
1210, 11e0_ 28958 . . 3  |-  ( E. y [ y  /  x ] ( x  e.  a  /\  ( a  i^i  x )  =  (/) )  <->  E. y ( y  e.  a  /\  (
a  i^i  y )  =  (/) ) )
136, 12e2bi 28807 . 2  |-  (. (
a  C_  On  /\  a  =/=  (/) ) ,. (
x  e.  a  /\  ( a  i^i  x
)  =  (/) )  ->.  E. y
( y  e.  a  /\  ( a  i^i  y )  =  (/) ) ).
14 df-rex 2713 . 2  |-  ( E. y  e.  a  ( a  i^i  y )  =  (/)  <->  E. y ( y  e.  a  /\  (
a  i^i  y )  =  (/) ) )
1513, 14e2bir 28808 1  |-  (. (
a  C_  On  /\  a  =/=  (/) ) ,. (
x  e.  a  /\  ( a  i^i  x
)  =  (/) )  ->.  E. y  e.  a  ( a  i^i  y )  =  (/) ).
Colors of variables: wff set class
Syntax hints:    <-> wb 178    /\ wa 360   A.wal 1550   E.wex 1551    = wceq 1653   [wsb 1659    e. wcel 1726    =/= wne 2601   E.wrex 2708   [.wsbc 3163    i^i cin 3321    C_ wss 3322   (/)c0 3630   Oncon0 4584   (.wvd2 28743
This theorem is referenced by:  onfrALTVD  29077
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2419
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ral 2712  df-rex 2713  df-rab 2716  df-v 2960  df-sbc 3164  df-csb 3254  df-in 3329  df-vd2 28744
  Copyright terms: Public domain W3C validator