Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  onfrALTlem2VD Unicode version

Theorem onfrALTlem2VD 28417
Description: Virtual deduction proof of onfrALTlem2 28046. The following User's Proof is a Virtual Deduction proof completed automatically by the tools program completeusersproof.cmd, which invokes Mel O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant. onfrALTlem2 28046 is onfrALTlem2VD 28417 without virtual deductions and was automatically derived from onfrALTlem2VD 28417.
1::  |-  (. ( a  C_  On  /\  a  =/=  (/) ) ,. ( x  e.  a  /\  -.  ( a  i^i  x )  =  (/) ) ,  ( ( y  e.  ( a  i^i  x )  /\  ( ( a  i^i  x )  i^i  y )  =  (/) )  /\  z  e.  ( a  i^i  y ) )  ->.  ( ( y  e.  ( a  i^i  x )  /\  ( ( a  i^i  x )  i^i  y )  =  (/) )  /\  z  e.  ( a  i^i  y ) ) ).
2:1:  |-  (. ( a  C_  On  /\  a  =/=  (/) ) ,. ( x  e.  a  /\  -.  ( a  i^i  x )  =  (/) ) ,  ( ( y  e.  ( a  i^i  x )  /\  ( ( a  i^i  x )  i^i  y )  =  (/) )  /\  z  e.  ( a  i^i  y ) )  ->.  z  e.  ( a  i^i  y ) ).
3:2:  |-  (. ( a  C_  On  /\  a  =/=  (/) ) ,. ( x  e.  a  /\  -.  ( a  i^i  x )  =  (/) ) ,  ( ( y  e.  ( a  i^i  x )  /\  ( ( a  i^i  x )  i^i  y )  =  (/) )  /\  z  e.  ( a  i^i  y ) )  ->.  z  e.  a ).
4::  |-  (. ( a  C_  On  /\  a  =/=  (/) )  ->.  ( a  C_  On  /\  a  =/=  (/) ) ).
5::  |-  (. ( a  C_  On  /\  a  =/=  (/) ) ,. ( x  e.  a  /\  -.  ( a  i^i  x )  =  (/) )  ->.  ( x  e.  a  /\  -.  ( a  i^i  x )  =  (/) ) ).
6:5:  |-  (. ( a  C_  On  /\  a  =/=  (/) ) ,. ( x  e.  a  /\  -.  ( a  i^i  x )  =  (/) )  ->.  x  e.  a ).
7:4:  |-  (. ( a  C_  On  /\  a  =/=  (/) )  ->.  a  C_  On ).
8:6,7:  |-  (. ( a  C_  On  /\  a  =/=  (/) ) ,. ( x  e.  a  /\  -.  ( a  i^i  x )  =  (/) )  ->.  x  e.  On ).
9:8:  |-  (. ( a  C_  On  /\  a  =/=  (/) ) ,. ( x  e.  a  /\  -.  ( a  i^i  x )  =  (/) )  ->.  Ord  x ).
10:9:  |-  (. ( a  C_  On  /\  a  =/=  (/) ) ,. ( x  e.  a  /\  -.  ( a  i^i  x )  =  (/) )  ->.  Tr  x ).
11:1:  |-  (. ( a  C_  On  /\  a  =/=  (/) ) ,. ( x  e.  a  /\  -.  ( a  i^i  x )  =  (/) ) ,  ( ( y  e.  ( a  i^i  x )  /\  ( ( a  i^i  x )  i^i  y )  =  (/) )  /\  z  e.  ( a  i^i  y ) )  ->.  y  e.  ( a  i^i  x ) ).
12:11:  |-  (. ( a  C_  On  /\  a  =/=  (/) ) ,. ( x  e.  a  /\  -.  ( a  i^i  x )  =  (/) ) ,  ( ( y  e.  ( a  i^i  x )  /\  ( ( a  i^i  x )  i^i  y )  =  (/) )  /\  z  e.  ( a  i^i  y ) )  ->.  y  e.  x ).
13:2:  |-  (. ( a  C_  On  /\  a  =/=  (/) ) ,. ( x  e.  a  /\  -.  ( a  i^i  x )  =  (/) ) ,  ( ( y  e.  ( a  i^i  x )  /\  ( ( a  i^i  x )  i^i  y )  =  (/) )  /\  z  e.  ( a  i^i  y ) )  ->.  z  e.  y ).
14:10,12,13:  |-  (. ( a  C_  On  /\  a  =/=  (/) ) ,. ( x  e.  a  /\  -.  ( a  i^i  x )  =  (/) ) ,  ( ( y  e.  ( a  i^i  x )  /\  ( ( a  i^i  x )  i^i  y )  =  (/) )  /\  z  e.  ( a  i^i  y ) )  ->.  z  e.  x ).
15:3,14:  |-  (. ( a  C_  On  /\  a  =/=  (/) ) ,. ( x  e.  a  /\  -.  ( a  i^i  x )  =  (/) ) ,  ( ( y  e.  ( a  i^i  x )  /\  ( ( a  i^i  x )  i^i  y )  =  (/) )  /\  z  e.  ( a  i^i  y ) )  ->.  z  e.  ( a  i^i  x ) ).
16:13,15:  |-  (. ( a  C_  On  /\  a  =/=  (/) ) ,. ( x  e.  a  /\  -.  ( a  i^i  x )  =  (/) ) ,  ( ( y  e.  ( a  i^i  x )  /\  ( ( a  i^i  x )  i^i  y )  =  (/) )  /\  z  e.  ( a  i^i  y ) )  ->.  z  e.  ( ( a  i^i  x )  i^i  y ) ).
17:16:  |-  (. ( a  C_  On  /\  a  =/=  (/) ) ,. ( x  e.  a  /\  -.  ( a  i^i  x )  =  (/) ) ,  ( y  e.  ( a  i^i  x )  /\  ( ( a  i^i  x )  i^i  y  )  =  (/) )  ->.  ( z  e.  ( a  i^i  y )  ->  z  e.  ( ( a  i^i  x )  i^i  y ) ) ).
18:17:  |-  (. ( a  C_  On  /\  a  =/=  (/) ) ,. ( x  e.  a  /\  -.  ( a  i^i  x )  =  (/) ) ,  ( y  e.  ( a  i^i  x )  /\  ( ( a  i^i  x )  i^i  y  )  =  (/) )  ->.  A. z ( z  e.  ( a  i^i  y )  ->  z  e.  ( ( a  i^i  x )  i^i  y ) ) ).
19:18:  |-  (. ( a  C_  On  /\  a  =/=  (/) ) ,. ( x  e.  a  /\  -.  ( a  i^i  x )  =  (/) ) ,  ( y  e.  ( a  i^i  x )  /\  ( ( a  i^i  x )  i^i  y  )  =  (/) )  ->.  ( a  i^i  y )  C_  ( ( a  i^i  x )  i^i  y ) ).
20::  |-  (. ( a  C_  On  /\  a  =/=  (/) ) ,. ( x  e.  a  /\  -.  ( a  i^i  x )  =  (/) ) ,  ( y  e.  ( a  i^i  x )  /\  ( ( a  i^i  x )  i^i  y  )  =  (/) )  ->.  ( y  e.  ( a  i^i  x )  /\  ( ( a  i^i  x )  i^i  y )  =  (/) ) ).
21:20:  |-  (. ( a  C_  On  /\  a  =/=  (/) ) ,. ( x  e.  a  /\  -.  ( a  i^i  x )  =  (/) ) ,  ( y  e.  ( a  i^i  x )  /\  ( ( a  i^i  x )  i^i  y  )  =  (/) )  ->.  ( ( a  i^i  x )  i^i  y )  =  (/) ).
22:19,21:  |-  (. ( a  C_  On  /\  a  =/=  (/) ) ,. ( x  e.  a  /\  -.  ( a  i^i  x )  =  (/) ) ,  ( y  e.  ( a  i^i  x )  /\  ( ( a  i^i  x )  i^i  y  )  =  (/) )  ->.  ( a  i^i  y )  =  (/) ).
23:20:  |-  (. ( a  C_  On  /\  a  =/=  (/) ) ,. ( x  e.  a  /\  -.  ( a  i^i  x )  =  (/) ) ,  ( y  e.  ( a  i^i  x )  /\  ( ( a  i^i  x )  i^i  y  )  =  (/) )  ->.  y  e.  ( a  i^i  x ) ).
24:23:  |-  (. ( a  C_  On  /\  a  =/=  (/) ) ,. ( x  e.  a  /\  -.  ( a  i^i  x )  =  (/) ) ,  ( y  e.  ( a  i^i  x )  /\  ( ( a  i^i  x )  i^i  y  )  =  (/) )  ->.  y  e.  a ).
25:22,24:  |-  (. ( a  C_  On  /\  a  =/=  (/) ) ,. ( x  e.  a  /\  -.  ( a  i^i  x )  =  (/) ) ,  ( y  e.  ( a  i^i  x )  /\  ( ( a  i^i  x )  i^i  y  )  =  (/) )  ->.  ( y  e.  a  /\  ( a  i^i  y )  =  (/) ) ).
26:25:  |-  (. ( a  C_  On  /\  a  =/=  (/) ) ,. ( x  e.  a  /\  -.  ( a  i^i  x )  =  (/) )  ->.  ( ( y  e.  ( a  i^i  x )  /\  ( ( a  i^i  x )  i^i  y )  =  (/) )  ->  ( y  e.  a  /\  ( a  i^i  y )  =  (/) ) ) ).
27:26:  |-  (. ( a  C_  On  /\  a  =/=  (/) ) ,. ( x  e.  a  /\  -.  ( a  i^i  x )  =  (/) )  ->.  A. y ( ( y  e.  ( a  i^i  x )  /\  ( ( a  i^i  x  )  i^i  y )  =  (/) )  ->  ( y  e.  a  /\  ( a  i^i  y )  =  (/) ) ) ).
28:27:  |-  (. ( a  C_  On  /\  a  =/=  (/) ) ,. ( x  e.  a  /\  -.  ( a  i^i  x )  =  (/) )  ->.  ( E. y ( y  e.  ( a  i^i  x )  /\  ( ( a  i^i  x  )  i^i  y )  =  (/) )  ->  E. y ( y  e.  a  /\  ( a  i^i  y )  =  (/) ) ) ).
29::  |-  (. ( a  C_  On  /\  a  =/=  (/) ) ,. ( x  e.  a  /\  -.  ( a  i^i  x )  =  (/) )  ->.  E. y  e.  ( a  i^i  x ) ( ( a  i^i  x )  i^i  y  )  =  (/) ).
30:29:  |-  (. ( a  C_  On  /\  a  =/=  (/) ) ,. ( x  e.  a  /\  -.  ( a  i^i  x )  =  (/) )  ->.  E. y ( y  e.  ( a  i^i  x )  /\  ( ( a  i^i  x )  i^i  y )  =  (/) ) ).
31:28,30:  |-  (. ( a  C_  On  /\  a  =/=  (/) ) ,. ( x  e.  a  /\  -.  ( a  i^i  x )  =  (/) )  ->.  E. y ( y  e.  a  /\  ( a  i^i  y )  =  (/) ) ).
qed:31:  |-  (. ( a  C_  On  /\  a  =/=  (/) ) ,. ( x  e.  a  /\  -.  ( a  i^i  x )  =  (/) )  ->.  E. y  e.  a ( a  i^i  y )  =  (/) ).
(Contributed by Alan Sare, 22-Jul-2012.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
onfrALTlem2VD  |-  (. (
a  C_  On  /\  a  =/=  (/) ) ,. (
x  e.  a  /\  -.  ( a  i^i  x
)  =  (/) )  ->.  E. y  e.  a  ( a  i^i  y )  =  (/) ).
Distinct variable groups:    y, a    x, y

Proof of Theorem onfrALTlem2VD
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 idn3 28128 . . . . . . . . . . . . . 14  |-  (. (
a  C_  On  /\  a  =/=  (/) ) ,. (
x  e.  a  /\  -.  ( a  i^i  x
)  =  (/) ) ,. ( ( y  e.  ( a  i^i  x
)  /\  ( (
a  i^i  x )  i^i  y )  =  (/) )  /\  z  e.  ( a  i^i  y ) )  ->.  ( ( y  e.  ( a  i^i  x )  /\  (
( a  i^i  x
)  i^i  y )  =  (/) )  /\  z  e.  ( a  i^i  y
) ) ).
2 simpr 447 . . . . . . . . . . . . . 14  |-  ( ( ( y  e.  ( a  i^i  x )  /\  ( ( a  i^i  x )  i^i  y )  =  (/) )  /\  z  e.  ( a  i^i  y ) )  ->  z  e.  ( a  i^i  y
) )
31, 2e3 28262 . . . . . . . . . . . . 13  |-  (. (
a  C_  On  /\  a  =/=  (/) ) ,. (
x  e.  a  /\  -.  ( a  i^i  x
)  =  (/) ) ,. ( ( y  e.  ( a  i^i  x
)  /\  ( (
a  i^i  x )  i^i  y )  =  (/) )  /\  z  e.  ( a  i^i  y ) )  ->.  z  e.  ( a  i^i  y ) ).
4 inss2 3478 . . . . . . . . . . . . . 14  |-  ( a  i^i  y )  C_  y
54sseli 3262 . . . . . . . . . . . . 13  |-  ( z  e.  ( a  i^i  y )  ->  z  e.  y )
63, 5e3 28262 . . . . . . . . . . . 12  |-  (. (
a  C_  On  /\  a  =/=  (/) ) ,. (
x  e.  a  /\  -.  ( a  i^i  x
)  =  (/) ) ,. ( ( y  e.  ( a  i^i  x
)  /\  ( (
a  i^i  x )  i^i  y )  =  (/) )  /\  z  e.  ( a  i^i  y ) )  ->.  z  e.  y ).
7 inss1 3477 . . . . . . . . . . . . . . 15  |-  ( a  i^i  y )  C_  a
87sseli 3262 . . . . . . . . . . . . . 14  |-  ( z  e.  ( a  i^i  y )  ->  z  e.  a )
93, 8e3 28262 . . . . . . . . . . . . 13  |-  (. (
a  C_  On  /\  a  =/=  (/) ) ,. (
x  e.  a  /\  -.  ( a  i^i  x
)  =  (/) ) ,. ( ( y  e.  ( a  i^i  x
)  /\  ( (
a  i^i  x )  i^i  y )  =  (/) )  /\  z  e.  ( a  i^i  y ) )  ->.  z  e.  a ).
10 idn2 28126 . . . . . . . . . . . . . . . . . 18  |-  (. (
a  C_  On  /\  a  =/=  (/) ) ,. (
x  e.  a  /\  -.  ( a  i^i  x
)  =  (/) )  ->.  ( x  e.  a  /\  -.  (
a  i^i  x )  =  (/) ) ).
11 simpl 443 . . . . . . . . . . . . . . . . . 18  |-  ( ( x  e.  a  /\  -.  ( a  i^i  x
)  =  (/) )  ->  x  e.  a )
1210, 11e2 28144 . . . . . . . . . . . . . . . . 17  |-  (. (
a  C_  On  /\  a  =/=  (/) ) ,. (
x  e.  a  /\  -.  ( a  i^i  x
)  =  (/) )  ->.  x  e.  a ).
13 idn1 28077 . . . . . . . . . . . . . . . . . 18  |-  (. (
a  C_  On  /\  a  =/=  (/) )  ->.  ( a  C_  On  /\  a  =/=  (/) ) ).
14 simpl 443 . . . . . . . . . . . . . . . . . 18  |-  ( ( a  C_  On  /\  a  =/=  (/) )  ->  a  C_  On )
1513, 14e1_ 28140 . . . . . . . . . . . . . . . . 17  |-  (. (
a  C_  On  /\  a  =/=  (/) )  ->.  a  C_  On ).
16 ssel 3260 . . . . . . . . . . . . . . . . . 18  |-  ( a 
C_  On  ->  ( x  e.  a  ->  x  e.  On ) )
1716com12 27 . . . . . . . . . . . . . . . . 17  |-  ( x  e.  a  ->  (
a  C_  On  ->  x  e.  On ) )
1812, 15, 17e21 28255 . . . . . . . . . . . . . . . 16  |-  (. (
a  C_  On  /\  a  =/=  (/) ) ,. (
x  e.  a  /\  -.  ( a  i^i  x
)  =  (/) )  ->.  x  e.  On ).
19 eloni 4505 . . . . . . . . . . . . . . . 16  |-  ( x  e.  On  ->  Ord  x )
2018, 19e2 28144 . . . . . . . . . . . . . . 15  |-  (. (
a  C_  On  /\  a  =/=  (/) ) ,. (
x  e.  a  /\  -.  ( a  i^i  x
)  =  (/) )  ->.  Ord  x ).
21 ordtr 4509 . . . . . . . . . . . . . . 15  |-  ( Ord  x  ->  Tr  x
)
2220, 21e2 28144 . . . . . . . . . . . . . 14  |-  (. (
a  C_  On  /\  a  =/=  (/) ) ,. (
x  e.  a  /\  -.  ( a  i^i  x
)  =  (/) )  ->.  Tr  x ).
23 simpll 730 . . . . . . . . . . . . . . . 16  |-  ( ( ( y  e.  ( a  i^i  x )  /\  ( ( a  i^i  x )  i^i  y )  =  (/) )  /\  z  e.  ( a  i^i  y ) )  ->  y  e.  ( a  i^i  x
) )
241, 23e3 28262 . . . . . . . . . . . . . . 15  |-  (. (
a  C_  On  /\  a  =/=  (/) ) ,. (
x  e.  a  /\  -.  ( a  i^i  x
)  =  (/) ) ,. ( ( y  e.  ( a  i^i  x
)  /\  ( (
a  i^i  x )  i^i  y )  =  (/) )  /\  z  e.  ( a  i^i  y ) )  ->.  y  e.  ( a  i^i  x ) ).
25 inss2 3478 . . . . . . . . . . . . . . . 16  |-  ( a  i^i  x )  C_  x
2625sseli 3262 . . . . . . . . . . . . . . 15  |-  ( y  e.  ( a  i^i  x )  ->  y  e.  x )
2724, 26e3 28262 . . . . . . . . . . . . . 14  |-  (. (
a  C_  On  /\  a  =/=  (/) ) ,. (
x  e.  a  /\  -.  ( a  i^i  x
)  =  (/) ) ,. ( ( y  e.  ( a  i^i  x
)  /\  ( (
a  i^i  x )  i^i  y )  =  (/) )  /\  z  e.  ( a  i^i  y ) )  ->.  y  e.  x ).
28 trel 4222 . . . . . . . . . . . . . . 15  |-  ( Tr  x  ->  ( (
z  e.  y  /\  y  e.  x )  ->  z  e.  x ) )
2928exp3acom23 1377 . . . . . . . . . . . . . 14  |-  ( Tr  x  ->  ( y  e.  x  ->  ( z  e.  y  ->  z  e.  x ) ) )
3022, 27, 6, 29e233 28290 . . . . . . . . . . . . 13  |-  (. (
a  C_  On  /\  a  =/=  (/) ) ,. (
x  e.  a  /\  -.  ( a  i^i  x
)  =  (/) ) ,. ( ( y  e.  ( a  i^i  x
)  /\  ( (
a  i^i  x )  i^i  y )  =  (/) )  /\  z  e.  ( a  i^i  y ) )  ->.  z  e.  x ).
31 elin 3446 . . . . . . . . . . . . . 14  |-  ( z  e.  ( a  i^i  x )  <->  ( z  e.  a  /\  z  e.  x ) )
3231simplbi2 608 . . . . . . . . . . . . 13  |-  ( z  e.  a  ->  (
z  e.  x  -> 
z  e.  ( a  i^i  x ) ) )
339, 30, 32e33 28259 . . . . . . . . . . . 12  |-  (. (
a  C_  On  /\  a  =/=  (/) ) ,. (
x  e.  a  /\  -.  ( a  i^i  x
)  =  (/) ) ,. ( ( y  e.  ( a  i^i  x
)  /\  ( (
a  i^i  x )  i^i  y )  =  (/) )  /\  z  e.  ( a  i^i  y ) )  ->.  z  e.  ( a  i^i  x ) ).
34 elin 3446 . . . . . . . . . . . . 13  |-  ( z  e.  ( ( a  i^i  x )  i^i  y )  <->  ( z  e.  ( a  i^i  x
)  /\  z  e.  y ) )
3534simplbi2com 1379 . . . . . . . . . . . 12  |-  ( z  e.  y  ->  (
z  e.  ( a  i^i  x )  -> 
z  e.  ( ( a  i^i  x )  i^i  y ) ) )
366, 33, 35e33 28259 . . . . . . . . . . 11  |-  (. (
a  C_  On  /\  a  =/=  (/) ) ,. (
x  e.  a  /\  -.  ( a  i^i  x
)  =  (/) ) ,. ( ( y  e.  ( a  i^i  x
)  /\  ( (
a  i^i  x )  i^i  y )  =  (/) )  /\  z  e.  ( a  i^i  y ) )  ->.  z  e.  ( ( a  i^i  x
)  i^i  y ) ).
3736in3an 28124 . . . . . . . . . 10  |-  (. (
a  C_  On  /\  a  =/=  (/) ) ,. (
x  e.  a  /\  -.  ( a  i^i  x
)  =  (/) ) ,. ( y  e.  ( a  i^i  x )  /\  ( ( a  i^i  x )  i^i  y )  =  (/) ) 
->.  ( z  e.  ( a  i^i  y )  ->  z  e.  ( ( a  i^i  x
)  i^i  y )
) ).
3837gen31 28134 . . . . . . . . 9  |-  (. (
a  C_  On  /\  a  =/=  (/) ) ,. (
x  e.  a  /\  -.  ( a  i^i  x
)  =  (/) ) ,. ( y  e.  ( a  i^i  x )  /\  ( ( a  i^i  x )  i^i  y )  =  (/) ) 
->.  A. z ( z  e.  ( a  i^i  y )  ->  z  e.  ( ( a  i^i  x )  i^i  y
) ) ).
39 dfss2 3255 . . . . . . . . . 10  |-  ( ( a  i^i  y ) 
C_  ( ( a  i^i  x )  i^i  y )  <->  A. z
( z  e.  ( a  i^i  y )  ->  z  e.  ( ( a  i^i  x
)  i^i  y )
) )
4039biimpri 197 . . . . . . . . 9  |-  ( A. z ( z  e.  ( a  i^i  y
)  ->  z  e.  ( ( a  i^i  x )  i^i  y
) )  ->  (
a  i^i  y )  C_  ( ( a  i^i  x )  i^i  y
) )
4138, 40e3 28262 . . . . . . . 8  |-  (. (
a  C_  On  /\  a  =/=  (/) ) ,. (
x  e.  a  /\  -.  ( a  i^i  x
)  =  (/) ) ,. ( y  e.  ( a  i^i  x )  /\  ( ( a  i^i  x )  i^i  y )  =  (/) ) 
->.  ( a  i^i  y
)  C_  ( (
a  i^i  x )  i^i  y ) ).
42 idn3 28128 . . . . . . . . 9  |-  (. (
a  C_  On  /\  a  =/=  (/) ) ,. (
x  e.  a  /\  -.  ( a  i^i  x
)  =  (/) ) ,. ( y  e.  ( a  i^i  x )  /\  ( ( a  i^i  x )  i^i  y )  =  (/) ) 
->.  ( y  e.  ( a  i^i  x )  /\  ( ( a  i^i  x )  i^i  y )  =  (/) ) ).
43 simpr 447 . . . . . . . . 9  |-  ( ( y  e.  ( a  i^i  x )  /\  ( ( a  i^i  x )  i^i  y
)  =  (/) )  -> 
( ( a  i^i  x )  i^i  y
)  =  (/) )
4442, 43e3 28262 . . . . . . . 8  |-  (. (
a  C_  On  /\  a  =/=  (/) ) ,. (
x  e.  a  /\  -.  ( a  i^i  x
)  =  (/) ) ,. ( y  e.  ( a  i^i  x )  /\  ( ( a  i^i  x )  i^i  y )  =  (/) ) 
->.  ( ( a  i^i  x )  i^i  y
)  =  (/) ).
45 sseq0 3574 . . . . . . . . 9  |-  ( ( ( a  i^i  y
)  C_  ( (
a  i^i  x )  i^i  y )  /\  (
( a  i^i  x
)  i^i  y )  =  (/) )  ->  (
a  i^i  y )  =  (/) )
4645ex 423 . . . . . . . 8  |-  ( ( a  i^i  y ) 
C_  ( ( a  i^i  x )  i^i  y )  ->  (
( ( a  i^i  x )  i^i  y
)  =  (/)  ->  (
a  i^i  y )  =  (/) ) )
4741, 44, 46e33 28259 . . . . . . 7  |-  (. (
a  C_  On  /\  a  =/=  (/) ) ,. (
x  e.  a  /\  -.  ( a  i^i  x
)  =  (/) ) ,. ( y  e.  ( a  i^i  x )  /\  ( ( a  i^i  x )  i^i  y )  =  (/) ) 
->.  ( a  i^i  y
)  =  (/) ).
48 simpl 443 . . . . . . . . 9  |-  ( ( y  e.  ( a  i^i  x )  /\  ( ( a  i^i  x )  i^i  y
)  =  (/) )  -> 
y  e.  ( a  i^i  x ) )
4942, 48e3 28262 . . . . . . . 8  |-  (. (
a  C_  On  /\  a  =/=  (/) ) ,. (
x  e.  a  /\  -.  ( a  i^i  x
)  =  (/) ) ,. ( y  e.  ( a  i^i  x )  /\  ( ( a  i^i  x )  i^i  y )  =  (/) ) 
->.  y  e.  (
a  i^i  x ) ).
50 inss1 3477 . . . . . . . . 9  |-  ( a  i^i  x )  C_  a
5150sseli 3262 . . . . . . . 8  |-  ( y  e.  ( a  i^i  x )  ->  y  e.  a )
5249, 51e3 28262 . . . . . . 7  |-  (. (
a  C_  On  /\  a  =/=  (/) ) ,. (
x  e.  a  /\  -.  ( a  i^i  x
)  =  (/) ) ,. ( y  e.  ( a  i^i  x )  /\  ( ( a  i^i  x )  i^i  y )  =  (/) ) 
->.  y  e.  a ).
53 pm3.21 435 . . . . . . 7  |-  ( ( a  i^i  y )  =  (/)  ->  ( y  e.  a  ->  (
y  e.  a  /\  ( a  i^i  y
)  =  (/) ) ) )
5447, 52, 53e33 28259 . . . . . 6  |-  (. (
a  C_  On  /\  a  =/=  (/) ) ,. (
x  e.  a  /\  -.  ( a  i^i  x
)  =  (/) ) ,. ( y  e.  ( a  i^i  x )  /\  ( ( a  i^i  x )  i^i  y )  =  (/) ) 
->.  ( y  e.  a  /\  ( a  i^i  y )  =  (/) ) ).
5554in3 28122 . . . . 5  |-  (. (
a  C_  On  /\  a  =/=  (/) ) ,. (
x  e.  a  /\  -.  ( a  i^i  x
)  =  (/) )  ->.  ( (
y  e.  ( a  i^i  x )  /\  ( ( a  i^i  x )  i^i  y
)  =  (/) )  -> 
( y  e.  a  /\  ( a  i^i  y )  =  (/) ) ) ).
5655gen21 28132 . . . 4  |-  (. (
a  C_  On  /\  a  =/=  (/) ) ,. (
x  e.  a  /\  -.  ( a  i^i  x
)  =  (/) )  ->.  A. y
( ( y  e.  ( a  i^i  x
)  /\  ( (
a  i^i  x )  i^i  y )  =  (/) )  ->  ( y  e.  a  /\  ( a  i^i  y )  =  (/) ) ) ).
57 exim 1580 . . . 4  |-  ( A. y ( ( y  e.  ( a  i^i  x )  /\  (
( a  i^i  x
)  i^i  y )  =  (/) )  ->  (
y  e.  a  /\  ( a  i^i  y
)  =  (/) ) )  ->  ( E. y
( y  e.  ( a  i^i  x )  /\  ( ( a  i^i  x )  i^i  y )  =  (/) )  ->  E. y ( y  e.  a  /\  (
a  i^i  y )  =  (/) ) ) )
5856, 57e2 28144 . . 3  |-  (. (
a  C_  On  /\  a  =/=  (/) ) ,. (
x  e.  a  /\  -.  ( a  i^i  x
)  =  (/) )  ->.  ( E. y ( y  e.  ( a  i^i  x
)  /\  ( (
a  i^i  x )  i^i  y )  =  (/) )  ->  E. y ( y  e.  a  /\  (
a  i^i  y )  =  (/) ) ) ).
59 onfrALTlem3VD 28415 . . . 4  |-  (. (
a  C_  On  /\  a  =/=  (/) ) ,. (
x  e.  a  /\  -.  ( a  i^i  x
)  =  (/) )  ->.  E. y  e.  ( a  i^i  x
) ( ( a  i^i  x )  i^i  y )  =  (/) ).
60 df-rex 2634 . . . . 5  |-  ( E. y  e.  ( a  i^i  x ) ( ( a  i^i  x
)  i^i  y )  =  (/)  <->  E. y ( y  e.  ( a  i^i  x )  /\  (
( a  i^i  x
)  i^i  y )  =  (/) ) )
6160biimpi 186 . . . 4  |-  ( E. y  e.  ( a  i^i  x ) ( ( a  i^i  x
)  i^i  y )  =  (/)  ->  E. y
( y  e.  ( a  i^i  x )  /\  ( ( a  i^i  x )  i^i  y )  =  (/) ) )
6259, 61e2 28144 . . 3  |-  (. (
a  C_  On  /\  a  =/=  (/) ) ,. (
x  e.  a  /\  -.  ( a  i^i  x
)  =  (/) )  ->.  E. y
( y  e.  ( a  i^i  x )  /\  ( ( a  i^i  x )  i^i  y )  =  (/) ) ).
63 id 19 . . 3  |-  ( ( E. y ( y  e.  ( a  i^i  x )  /\  (
( a  i^i  x
)  i^i  y )  =  (/) )  ->  E. y
( y  e.  a  /\  ( a  i^i  y )  =  (/) ) )  ->  ( E. y ( y  e.  ( a  i^i  x
)  /\  ( (
a  i^i  x )  i^i  y )  =  (/) )  ->  E. y ( y  e.  a  /\  (
a  i^i  y )  =  (/) ) ) )
6458, 62, 63e22 28184 . 2  |-  (. (
a  C_  On  /\  a  =/=  (/) ) ,. (
x  e.  a  /\  -.  ( a  i^i  x
)  =  (/) )  ->.  E. y
( y  e.  a  /\  ( a  i^i  y )  =  (/) ) ).
65 df-rex 2634 . . 3  |-  ( E. y  e.  a  ( a  i^i  y )  =  (/)  <->  E. y ( y  e.  a  /\  (
a  i^i  y )  =  (/) ) )
6665biimpri 197 . 2  |-  ( E. y ( y  e.  a  /\  ( a  i^i  y )  =  (/) )  ->  E. y  e.  a  ( a  i^i  y )  =  (/) )
6764, 66e2 28144 1  |-  (. (
a  C_  On  /\  a  =/=  (/) ) ,. (
x  e.  a  /\  -.  ( a  i^i  x
)  =  (/) )  ->.  E. y  e.  a  ( a  i^i  y )  =  (/) ).
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 358   A.wal 1545   E.wex 1546    = wceq 1647    e. wcel 1715    =/= wne 2529   E.wrex 2629    i^i cin 3237    C_ wss 3238   (/)c0 3543   Tr wtr 4215   Ord word 4494   Oncon0 4495   (.wvd2 28081
This theorem is referenced by:  onfrALTVD  28419
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1551  ax-5 1562  ax-17 1621  ax-9 1659  ax-8 1680  ax-14 1719  ax-6 1734  ax-7 1739  ax-11 1751  ax-12 1937  ax-ext 2347  ax-sep 4243  ax-nul 4251  ax-pr 4316
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 937  df-tru 1324  df-ex 1547  df-nf 1550  df-sb 1654  df-eu 2221  df-mo 2222  df-clab 2353  df-cleq 2359  df-clel 2362  df-nfc 2491  df-ne 2531  df-ral 2633  df-rex 2634  df-rab 2637  df-v 2875  df-sbc 3078  df-csb 3168  df-dif 3241  df-un 3243  df-in 3245  df-ss 3252  df-nul 3544  df-if 3655  df-sn 3735  df-pr 3736  df-op 3738  df-uni 3930  df-br 4126  df-opab 4180  df-tr 4216  df-eprel 4408  df-po 4417  df-so 4418  df-fr 4455  df-we 4457  df-ord 4498  df-on 4499  df-vd1 28073  df-vd2 28082  df-vd3 28094
  Copyright terms: Public domain W3C validator