Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  onfrALTlem4 Unicode version

Theorem onfrALTlem4 28308
Description: Lemma for onfrALT 28314. (Contributed by Alan Sare, 22-Jul-2012.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
onfrALTlem4  |-  ( [. y  /  x ]. (
x  e.  a  /\  ( a  i^i  x
)  =  (/) )  <->  ( y  e.  a  /\  (
a  i^i  y )  =  (/) ) )
Distinct variable group:    x, a

Proof of Theorem onfrALTlem4
StepHypRef Expression
1 sbcan 3033 . 2  |-  ( [. y  /  x ]. (
x  e.  a  /\  ( a  i^i  x
)  =  (/) )  <->  ( [. y  /  x ]. x  e.  a  /\  [. y  /  x ]. ( a  i^i  x )  =  (/) ) )
2 vex 2791 . . . 4  |-  y  e. 
_V
3 sbcel1gv 3050 . . . 4  |-  ( y  e.  _V  ->  ( [. y  /  x ]. x  e.  a  <->  y  e.  a ) )
42, 3ax-mp 8 . . 3  |-  ( [. y  /  x ]. x  e.  a  <->  y  e.  a )
5 sbceqg 3097 . . . . 5  |-  ( y  e.  _V  ->  ( [. y  /  x ]. ( a  i^i  x
)  =  (/)  <->  [_ y  /  x ]_ ( a  i^i  x )  =  [_ y  /  x ]_ (/) ) )
62, 5ax-mp 8 . . . 4  |-  ( [. y  /  x ]. (
a  i^i  x )  =  (/)  <->  [_ y  /  x ]_ ( a  i^i  x
)  =  [_ y  /  x ]_ (/) )
7 csbing 3376 . . . . . . 7  |-  ( y  e.  _V  ->  [_ y  /  x ]_ ( a  i^i  x )  =  ( [_ y  /  x ]_ a  i^i  [_ y  /  x ]_ x ) )
82, 7ax-mp 8 . . . . . 6  |-  [_ y  /  x ]_ ( a  i^i  x )  =  ( [_ y  /  x ]_ a  i^i  [_ y  /  x ]_ x )
9 csbconstg 3095 . . . . . . . 8  |-  ( y  e.  _V  ->  [_ y  /  x ]_ a  =  a )
102, 9ax-mp 8 . . . . . . 7  |-  [_ y  /  x ]_ a  =  a
11 csbvarg 3108 . . . . . . . 8  |-  ( y  e.  _V  ->  [_ y  /  x ]_ x  =  y )
122, 11ax-mp 8 . . . . . . 7  |-  [_ y  /  x ]_ x  =  y
1310, 12ineq12i 3368 . . . . . 6  |-  ( [_ y  /  x ]_ a  i^i  [_ y  /  x ]_ x )  =  ( a  i^i  y )
148, 13eqtri 2303 . . . . 5  |-  [_ y  /  x ]_ ( a  i^i  x )  =  ( a  i^i  y
)
15 csbconstg 3095 . . . . . 6  |-  ( y  e.  _V  ->  [_ y  /  x ]_ (/)  =  (/) )
162, 15ax-mp 8 . . . . 5  |-  [_ y  /  x ]_ (/)  =  (/)
1714, 16eqeq12i 2296 . . . 4  |-  ( [_ y  /  x ]_ (
a  i^i  x )  =  [_ y  /  x ]_ (/)  <->  ( a  i^i  y )  =  (/) )
186, 17bitri 240 . . 3  |-  ( [. y  /  x ]. (
a  i^i  x )  =  (/)  <->  ( a  i^i  y )  =  (/) )
194, 18anbi12i 678 . 2  |-  ( (
[. y  /  x ]. x  e.  a  /\  [. y  /  x ]. ( a  i^i  x
)  =  (/) )  <->  ( y  e.  a  /\  (
a  i^i  y )  =  (/) ) )
201, 19bitri 240 1  |-  ( [. y  /  x ]. (
x  e.  a  /\  ( a  i^i  x
)  =  (/) )  <->  ( y  e.  a  /\  (
a  i^i  y )  =  (/) ) )
Colors of variables: wff set class
Syntax hints:    <-> wb 176    /\ wa 358    = wceq 1623    e. wcel 1684   _Vcvv 2788   [.wsbc 2991   [_csb 3081    i^i cin 3151   (/)c0 3455
This theorem is referenced by:  onfrALTlem1  28313  onfrALTlem1VD  28666
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-in 3159
  Copyright terms: Public domain W3C validator