Mathbox for Alan Sare < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  onfrALTlem4VD Structured version   Unicode version

Theorem onfrALTlem4VD 28999
Description: Virtual deduction proof of onfrALTlem4 28630. The following User's Proof is a Virtual Deduction proof completed automatically by the tools program completeusersproof.cmd, which invokes Mel O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant. onfrALTlem4 28630 is onfrALTlem4VD 28999 without virtual deductions and was automatically derived from onfrALTlem4VD 28999.
 1:: 2:1: 3:1: 4:1: 5:1: 6:4,5: 7:3,6: 8:1: 9:7,8: 10:2,9: 11:1: 12:11,10: 13:1: qed:13,12:
(Contributed by Alan Sare, 22-Jul-2012.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
onfrALTlem4VD
Distinct variable group:   ,

Proof of Theorem onfrALTlem4VD
StepHypRef Expression
1 vex 2960 . . 3
2 sbcang 3205 . . 3
31, 2e0_ 28885 . 2
4 sbcel1gv 3221 . . . 4
51, 4e0_ 28885 . . 3
6 sbceqg 3268 . . . . 5
71, 6e0_ 28885 . . . 4
8 csbing 3549 . . . . . . 7
91, 8e0_ 28885 . . . . . 6
10 csbconstg 3266 . . . . . . . 8
111, 10e0_ 28885 . . . . . . 7
12 csbvarg 3279 . . . . . . . 8
131, 12e0_ 28885 . . . . . . 7
1411, 13ineq12i 3541 . . . . . 6
159, 14eqtri 2457 . . . . 5
16 csbconstg 3266 . . . . . 6
171, 16e0_ 28885 . . . . 5
1815, 17eqeq12i 2450 . . . 4
197, 18bitri 242 . . 3
205, 19anbi12i 680 . 2
213, 20bitri 242 1
 Colors of variables: wff set class Syntax hints:   wb 178   wa 360   wceq 1653   wcel 1726  cvv 2957  wsbc 3162  csb 3252   cin 3320  c0 3629 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2418 This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-clab 2424  df-cleq 2430  df-clel 2433  df-nfc 2562  df-rab 2715  df-v 2959  df-sbc 3163  df-csb 3253  df-in 3328
 Copyright terms: Public domain W3C validator