Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  onfrALTlem4VD Unicode version

Theorem onfrALTlem4VD 28662
Description: Virtual deduction proof of onfrALTlem4 28308. The following User's Proof is a Virtual Deduction proof completed automatically by the tools program completeusersproof.cmd, which invokes Mel O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant. onfrALTlem4 28308 is onfrALTlem4VD 28662 without virtual deductions and was automatically derived from onfrALTlem4VD 28662.
1::  |-  y  e.  _V
2:1:  |-  ( [. y  /  x ]. ( a  i^i  x )  =  (/)  <->  [_  y  /  x ]_ ( a  i^i  x )  =  [_ y  /  x ]_ (/) )
3:1:  |-  [_ y  /  x ]_ ( a  i^i  x )  =  ( [_ y  /  x ]_  a  i^i  [_ y  /  x ]_ x )
4:1:  |-  [_ y  /  x ]_ a  =  a
5:1:  |-  [_ y  /  x ]_ x  =  y
6:4,5:  |-  ( [_ y  /  x ]_ a  i^i  [_ y  /  x ]_ x )  =  (  a  i^i  y )
7:3,6:  |-  [_ y  /  x ]_ ( a  i^i  x )  =  ( a  i^i  y )
8:1:  |-  [_ y  /  x ]_ (/)  =  (/)
9:7,8:  |-  ( [_ y  /  x ]_ ( a  i^i  x )  =  [_ y  /  x ]_  (/)  <->  ( a  i^i  y )  =  (/) )
10:2,9:  |-  ( [. y  /  x ]. ( a  i^i  x )  =  (/)  <->  ( a  i^i  y )  =  (/) )
11:1:  |-  ( [. y  /  x ]. x  e.  a  <->  y  e.  a )
12:11,10:  |-  ( ( [. y  /  x ]. x  e.  a  /\  [. y  /  x ]. (  a  i^i  x )  =  (/) )  <->  ( y  e.  a  /\  ( a  i^i  y )  =  (/) ) )
13:1:  |-  ( [. y  /  x ]. ( x  e.  a  /\  ( a  i^i  x )  =  (/) )  <->  ( [. y  /  x ]. x  e.  a  /\  [. y  /  x ]. ( a  i^i  x )  =  (/) ) )
qed:13,12:  |-  ( [. y  /  x ]. ( x  e.  a  /\  ( a  i^i  x )  =  (/) )  <->  ( y  e.  a  /\  ( a  i^i  y )  =  (/) ) )
(Contributed by Alan Sare, 22-Jul-2012.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
onfrALTlem4VD  |-  ( [. y  /  x ]. (
x  e.  a  /\  ( a  i^i  x
)  =  (/) )  <->  ( y  e.  a  /\  (
a  i^i  y )  =  (/) ) )
Distinct variable group:    x, a

Proof of Theorem onfrALTlem4VD
StepHypRef Expression
1 vex 2791 . . 3  |-  y  e. 
_V
2 sbcang 3034 . . 3  |-  ( y  e.  _V  ->  ( [. y  /  x ]. ( x  e.  a  /\  ( a  i^i  x )  =  (/) ) 
<->  ( [. y  /  x ]. x  e.  a  /\  [. y  /  x ]. ( a  i^i  x )  =  (/) ) ) )
31, 2e0_ 28547 . 2  |-  ( [. y  /  x ]. (
x  e.  a  /\  ( a  i^i  x
)  =  (/) )  <->  ( [. y  /  x ]. x  e.  a  /\  [. y  /  x ]. ( a  i^i  x )  =  (/) ) )
4 sbcel1gv 3050 . . . 4  |-  ( y  e.  _V  ->  ( [. y  /  x ]. x  e.  a  <->  y  e.  a ) )
51, 4e0_ 28547 . . 3  |-  ( [. y  /  x ]. x  e.  a  <->  y  e.  a )
6 sbceqg 3097 . . . . 5  |-  ( y  e.  _V  ->  ( [. y  /  x ]. ( a  i^i  x
)  =  (/)  <->  [_ y  /  x ]_ ( a  i^i  x )  =  [_ y  /  x ]_ (/) ) )
71, 6e0_ 28547 . . . 4  |-  ( [. y  /  x ]. (
a  i^i  x )  =  (/)  <->  [_ y  /  x ]_ ( a  i^i  x
)  =  [_ y  /  x ]_ (/) )
8 csbing 3376 . . . . . . 7  |-  ( y  e.  _V  ->  [_ y  /  x ]_ ( a  i^i  x )  =  ( [_ y  /  x ]_ a  i^i  [_ y  /  x ]_ x ) )
91, 8e0_ 28547 . . . . . 6  |-  [_ y  /  x ]_ ( a  i^i  x )  =  ( [_ y  /  x ]_ a  i^i  [_ y  /  x ]_ x )
10 csbconstg 3095 . . . . . . . 8  |-  ( y  e.  _V  ->  [_ y  /  x ]_ a  =  a )
111, 10e0_ 28547 . . . . . . 7  |-  [_ y  /  x ]_ a  =  a
12 csbvarg 3108 . . . . . . . 8  |-  ( y  e.  _V  ->  [_ y  /  x ]_ x  =  y )
131, 12e0_ 28547 . . . . . . 7  |-  [_ y  /  x ]_ x  =  y
1411, 13ineq12i 3368 . . . . . 6  |-  ( [_ y  /  x ]_ a  i^i  [_ y  /  x ]_ x )  =  ( a  i^i  y )
159, 14eqtri 2303 . . . . 5  |-  [_ y  /  x ]_ ( a  i^i  x )  =  ( a  i^i  y
)
16 csbconstg 3095 . . . . . 6  |-  ( y  e.  _V  ->  [_ y  /  x ]_ (/)  =  (/) )
171, 16e0_ 28547 . . . . 5  |-  [_ y  /  x ]_ (/)  =  (/)
1815, 17eqeq12i 2296 . . . 4  |-  ( [_ y  /  x ]_ (
a  i^i  x )  =  [_ y  /  x ]_ (/)  <->  ( a  i^i  y )  =  (/) )
197, 18bitri 240 . . 3  |-  ( [. y  /  x ]. (
a  i^i  x )  =  (/)  <->  ( a  i^i  y )  =  (/) )
205, 19anbi12i 678 . 2  |-  ( (
[. y  /  x ]. x  e.  a  /\  [. y  /  x ]. ( a  i^i  x
)  =  (/) )  <->  ( y  e.  a  /\  (
a  i^i  y )  =  (/) ) )
213, 20bitri 240 1  |-  ( [. y  /  x ]. (
x  e.  a  /\  ( a  i^i  x
)  =  (/) )  <->  ( y  e.  a  /\  (
a  i^i  y )  =  (/) ) )
Colors of variables: wff set class
Syntax hints:    <-> wb 176    /\ wa 358    = wceq 1623    e. wcel 1684   _Vcvv 2788   [.wsbc 2991   [_csb 3081    i^i cin 3151   (/)c0 3455
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-in 3159
  Copyright terms: Public domain W3C validator