Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  onfrALTlem5VD Unicode version

Theorem onfrALTlem5VD 28423
Description: Virtual deduction proof of onfrALTlem5 28052. The following User's Proof is a Virtual Deduction proof completed automatically by the tools program completeusersproof.cmd, which invokes Mel O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant. onfrALTlem5 28052 is onfrALTlem5VD 28423 without virtual deductions and was automatically derived from onfrALTlem5VD 28423.
1::  |-  a  e.  _V
2:1:  |-  ( a  i^i  x )  e.  _V
3:2:  |-  ( [. ( a  i^i  x )  /  b ]. b  =  (/)  <->  ( a  i^i  x )  =  (/) )
4:3:  |-  ( -.  [. ( a  i^i  x )  /  b ]. b  =  (/)  <->  -.  ( a  i^i  x )  =  (/) )
5::  |-  ( ( a  i^i  x )  =/=  (/)  <->  -.  ( a  i^i  x  )  =  (/) )
6:4,5:  |-  ( -.  [. ( a  i^i  x )  /  b ]. b  =  (/)  <->  ( a  i^i  x )  =/=  (/) )
7:2:  |-  ( -.  [. ( a  i^i  x )  /  b ]. b  =  (/)  <->  [. ( a  i^i  x )  /  b ]. -.  b  =  (/) )
8::  |-  ( b  =/=  (/)  <->  -.  b  =  (/) )
9:8:  |-  A. b ( b  =/=  (/)  <->  -.  b  =  (/) )
10:2,9:  |-  ( [. ( a  i^i  x )  /  b ]. b  =/=  (/)  <->  [. ( a  i^i  x )  /  b ]. -.  b  =  (/) )
11:7,10:  |-  ( -.  [. ( a  i^i  x )  /  b ]. b  =  (/)  <->  [. ( a  i^i  x )  /  b ]. b  =/=  (/) )
12:6,11:  |-  ( [. ( a  i^i  x )  /  b ]. b  =/=  (/)  <->  (  a  i^i  x )  =/=  (/) )
13:2:  |-  ( [. ( a  i^i  x )  /  b ]. b  C_  ( a  i^i  x  )  <->  ( a  i^i  x )  C_  ( a  i^i  x ) )
14:12,13:  |-  ( ( [. ( a  i^i  x )  /  b ]. b  C_  ( a  i^i  x )  /\  [. ( a  i^i  x )  /  b ]. b  =/=  (/) )  <->  ( ( a  i^i  x )  C_  ( a  i^i  x )  /\  ( a  i^i  x )  =/=  (/) ) )
15:2:  |-  ( [. ( a  i^i  x )  /  b ]. ( b  C_  ( a  i^i  x )  /\  b  =/=  (/) )  <->  ( [. ( a  i^i  x )  /  b ]. b  C_  ( a  i^i  x )  /\  [. ( a  i^i  x )  /  b ]. b  =/=  (/) ) )
16:15,14:  |-  ( [. ( a  i^i  x )  /  b ]. ( b  C_  ( a  i^i  x )  /\  b  =/=  (/) )  <->  ( ( a  i^i  x )  C_  ( a  i^i  x )  /\  ( a  i^i  x )  =/=  (/) ) )
17:2:  |-  [_ ( a  i^i  x )  /  b ]_ ( b  i^i  y )  =  (  [_ ( a  i^i  x )  /  b ]_ b  i^i  [_ ( a  i^i  x )  /  b ]_ y )
18:2:  |-  [_ ( a  i^i  x )  /  b ]_ b  =  ( a  i^i  x )
19:2:  |-  [_ ( a  i^i  x )  /  b ]_ y  =  y
20:18,19:  |-  ( [_ ( a  i^i  x )  /  b ]_ b  i^i  [_ ( a  i^i  x )  /  b ]_ y )  =  ( ( a  i^i  x )  i^i  y )
21:17,20:  |-  [_ ( a  i^i  x )  /  b ]_ ( b  i^i  y )  =  ( (  a  i^i  x )  i^i  y )
22:2:  |-  ( [. ( a  i^i  x )  /  b ]. ( b  i^i  y )  =  (/)  <->  [_ ( a  i^i  x )  /  b ]_ ( b  i^i  y )  =  [_ ( a  i^i  x )  /  b ]_  (/) )
23:2:  |-  [_ ( a  i^i  x )  /  b ]_ (/)  =  (/)
24:21,23:  |-  ( [_ ( a  i^i  x )  /  b ]_ ( b  i^i  y )  =  [_ ( a  i^i  x )  /  b ]_ (/)  <->  ( ( a  i^i  x )  i^i  y )  =  (/) )
25:22,24:  |-  ( [. ( a  i^i  x )  /  b ]. ( b  i^i  y )  =  (/)  <->  ( ( a  i^i  x )  i^i  y )  =  (/) )
26:2:  |-  ( [. ( a  i^i  x )  /  b ]. y  e.  b  <->  y  e.  ( a  i^i  x ) )
27:25,26:  |-  ( ( [. ( a  i^i  x )  /  b ]. y  e.  b  /\  [.  ( a  i^i  x )  /  b ]. ( b  i^i  y )  =  (/) )  <->  ( y  e.  ( a  i^i  x )  /\  ( (  a  i^i  x )  i^i  y )  =  (/) ) )
28:2:  |-  ( [. ( a  i^i  x )  /  b ]. ( y  e.  b  /\  ( b  i^i  y )  =  (/) )  <->  ( [. ( a  i^i  x )  /  b ]. y  e.  b  /\  [. ( a  i^i  x )  /  b ]. ( b  i^i  y )  =  (/) ) )
29:27,28:  |-  ( [. ( a  i^i  x )  /  b ]. ( y  e.  b  /\  ( b  i^i  y )  =  (/) )  <->  ( y  e.  ( a  i^i  x )  /\  ( ( a  i^i  x )  i^i  y )  =  (/) ) )
30:29:  |-  A. y ( [. ( a  i^i  x )  /  b ]. ( y  e.  b  /\  ( b  i^i  y )  =  (/) )  <->  ( y  e.  ( a  i^i  x )  /\  ( ( a  i^i  x )  i^i  y )  =  (/) ) )
31:30:  |-  ( E. y [. ( a  i^i  x )  /  b ]. ( y  e.  b  /\  ( b  i^i  y )  =  (/) )  <->  E. y ( y  e.  ( a  i^i  x )  /\  ( ( a  i^i  x )  i^i  y )  =  (/) ) )
32::  |-  ( E. y  e.  ( a  i^i  x ) ( ( a  i^i  x )  i^i  y )  =  (/)  <->  E. y ( y  e.  ( a  i^i  x )  /\  ( ( a  i^i  x )  i^i  y )  =  (/)  ) )
33:31,32:  |-  ( E. y [. ( a  i^i  x )  /  b ]. ( y  e.  b  /\  ( b  i^i  y )  =  (/) )  <->  E. y  e.  ( a  i^i  x ) ( ( a  i^i  x )  i^i  y )  =  (/) )
34:2:  |-  ( E. y [. ( a  i^i  x )  /  b ]. ( y  e.  b  /\  ( b  i^i  y )  =  (/) )  <->  [. ( a  i^i  x )  /  b ]. E. y ( y  e.  b  /\  (  b  i^i  y )  =  (/) ) )
35:33,34:  |-  ( [. ( a  i^i  x )  /  b ]. E. y ( y  e.  b  /\  ( b  i^i  y )  =  (/) )  <->  E. y  e.  ( a  i^i  x ) ( ( a  i^i  x )  i^i  y  )  =  (/) )
36::  |-  ( E. y  e.  b ( b  i^i  y )  =  (/)  <->  E. y  ( y  e.  b  /\  ( b  i^i  y )  =  (/) ) )
37:36:  |-  A. b ( E. y  e.  b ( b  i^i  y )  =  (/)  <->  E. y ( y  e.  b  /\  ( b  i^i  y )  =  (/) ) )
38:2,37:  |-  ( [. ( a  i^i  x )  /  b ]. E. y  e.  b ( b  i^i  y )  =  (/)  <->  [. ( a  i^i  x )  /  b ]. E. y ( y  e.  b  /\  ( b  i^i  y )  =  (/) ) )
39:35,38:  |-  ( [. ( a  i^i  x )  /  b ]. E. y  e.  b ( b  i^i  y )  =  (/)  <->  E. y  e.  ( a  i^i  x ) ( ( a  i^i  x )  i^i  y )  =  (/) )
40:16,39:  |-  ( ( [. ( a  i^i  x )  /  b ]. ( b  C_  ( a  i^i  x )  /\  b  =/=  (/) )  ->  [. ( a  i^i  x )  /  b ]. E. y  e.  b ( b  i^i  y )  =  (/) )  <->  ( ( ( a  i^i  x )  C_  ( a  i^i  x )  /\  ( a  i^i  x )  =/=  (/) )  ->  E. y  e.  ( a  i^i  x ) ( ( a  i^i  x )  i^i  y )  =  (/) ) )
41:2:  |-  ( [. ( a  i^i  x )  /  b ]. ( ( b  C_  ( a  i^i  x )  /\  b  =/=  (/) )  ->  E. y  e.  b ( b  i^i  y )  =  (/) )  <->  ( [. ( a  i^i  x )  /  b ]. ( b  C_  ( a  i^i  x )  /\  b  =/=  (/) )  ->  [. ( a  i^i  x )  /  b ]. E. y  e.  b ( b  i^i  y )  =  (/) ) )
qed:40,41:  |-  ( [. ( a  i^i  x )  /  b ]. ( ( b  C_  ( a  i^i  x )  /\  b  =/=  (/) )  ->  E. y  e.  b ( b  i^i  y )  =  (/) )  <->  ( ( ( a  i^i  x )  C_  ( a  i^i  x )  /\  ( a  i^i  x )  =/=  (/) )  ->  E. y  e.  ( a  i^i  x  ) ( ( a  i^i  x )  i^i  y )  =  (/) ) )
(Contributed by Alan Sare, 22-Jul-2012.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
onfrALTlem5VD  |-  ( [. ( a  i^i  x
)  /  b ]. ( ( b  C_  ( a  i^i  x
)  /\  b  =/=  (/) )  ->  E. y  e.  b  ( b  i^i  y )  =  (/) ) 
<->  ( ( ( a  i^i  x )  C_  ( a  i^i  x
)  /\  ( a  i^i  x )  =/=  (/) )  ->  E. y  e.  (
a  i^i  x )
( ( a  i^i  x )  i^i  y
)  =  (/) ) )
Distinct variable groups:    a, b,
y    x, b, y

Proof of Theorem onfrALTlem5VD
StepHypRef Expression
1 vex 2867 . . . 4  |-  a  e. 
_V
21inex1 4236 . . 3  |-  ( a  i^i  x )  e. 
_V
3 sbcimg 3108 . . 3  |-  ( ( a  i^i  x )  e.  _V  ->  ( [. ( a  i^i  x
)  /  b ]. ( ( b  C_  ( a  i^i  x
)  /\  b  =/=  (/) )  ->  E. y  e.  b  ( b  i^i  y )  =  (/) ) 
<->  ( [. ( a  i^i  x )  / 
b ]. ( b  C_  ( a  i^i  x
)  /\  b  =/=  (/) )  ->  [. ( a  i^i  x )  / 
b ]. E. y  e.  b  ( b  i^i  y )  =  (/) ) ) )
42, 3e0_ 28307 . 2  |-  ( [. ( a  i^i  x
)  /  b ]. ( ( b  C_  ( a  i^i  x
)  /\  b  =/=  (/) )  ->  E. y  e.  b  ( b  i^i  y )  =  (/) ) 
<->  ( [. ( a  i^i  x )  / 
b ]. ( b  C_  ( a  i^i  x
)  /\  b  =/=  (/) )  ->  [. ( a  i^i  x )  / 
b ]. E. y  e.  b  ( b  i^i  y )  =  (/) ) )
5 sbcang 3110 . . . . 5  |-  ( ( a  i^i  x )  e.  _V  ->  ( [. ( a  i^i  x
)  /  b ]. ( b  C_  (
a  i^i  x )  /\  b  =/=  (/) )  <->  ( [. ( a  i^i  x
)  /  b ]. b  C_  ( a  i^i  x )  /\  [. (
a  i^i  x )  /  b ]. b  =/=  (/) ) ) )
62, 5e0_ 28307 . . . 4  |-  ( [. ( a  i^i  x
)  /  b ]. ( b  C_  (
a  i^i  x )  /\  b  =/=  (/) )  <->  ( [. ( a  i^i  x
)  /  b ]. b  C_  ( a  i^i  x )  /\  [. (
a  i^i  x )  /  b ]. b  =/=  (/) ) )
7 sseq1 3275 . . . . . . 7  |-  ( b  =  ( a  i^i  x )  ->  (
b  C_  ( a  i^i  x )  <->  ( a  i^i  x )  C_  (
a  i^i  x )
) )
87sbcieg 3099 . . . . . 6  |-  ( ( a  i^i  x )  e.  _V  ->  ( [. ( a  i^i  x
)  /  b ]. b  C_  ( a  i^i  x )  <->  ( a  i^i  x )  C_  (
a  i^i  x )
) )
92, 8e0_ 28307 . . . . 5  |-  ( [. ( a  i^i  x
)  /  b ]. b  C_  ( a  i^i  x )  <->  ( a  i^i  x )  C_  (
a  i^i  x )
)
10 sbcng 3107 . . . . . . . . 9  |-  ( ( a  i^i  x )  e.  _V  ->  ( [. ( a  i^i  x
)  /  b ].  -.  b  =  (/)  <->  -.  [. (
a  i^i  x )  /  b ]. b  =  (/) ) )
1110bicomd 192 . . . . . . . 8  |-  ( ( a  i^i  x )  e.  _V  ->  ( -.  [. ( a  i^i  x )  /  b ]. b  =  (/)  <->  [. ( a  i^i  x )  / 
b ].  -.  b  =  (/) ) )
122, 11e0_ 28307 . . . . . . 7  |-  ( -. 
[. ( a  i^i  x )  /  b ]. b  =  (/)  <->  [. ( a  i^i  x )  / 
b ].  -.  b  =  (/) )
13 df-ne 2523 . . . . . . . . 9  |-  ( b  =/=  (/)  <->  -.  b  =  (/) )
1413ax-gen 1546 . . . . . . . 8  |-  A. b
( b  =/=  (/)  <->  -.  b  =  (/) )
15 sbcbi 28048 . . . . . . . 8  |-  ( ( a  i^i  x )  e.  _V  ->  ( A. b ( b  =/=  (/) 
<->  -.  b  =  (/) )  ->  ( [. (
a  i^i  x )  /  b ]. b  =/=  (/)  <->  [. ( a  i^i  x )  /  b ].  -.  b  =  (/) ) ) )
162, 14, 15e00 28303 . . . . . . 7  |-  ( [. ( a  i^i  x
)  /  b ]. b  =/=  (/)  <->  [. ( a  i^i  x )  /  b ].  -.  b  =  (/) )
1712, 16bitr4i 243 . . . . . 6  |-  ( -. 
[. ( a  i^i  x )  /  b ]. b  =  (/)  <->  [. ( a  i^i  x )  / 
b ]. b  =/=  (/) )
18 eqsbc3 3106 . . . . . . . . 9  |-  ( ( a  i^i  x )  e.  _V  ->  ( [. ( a  i^i  x
)  /  b ]. b  =  (/)  <->  ( a  i^i  x )  =  (/) ) )
192, 18e0_ 28307 . . . . . . . 8  |-  ( [. ( a  i^i  x
)  /  b ]. b  =  (/)  <->  ( a  i^i  x )  =  (/) )
2019notbii 287 . . . . . . 7  |-  ( -. 
[. ( a  i^i  x )  /  b ]. b  =  (/)  <->  -.  (
a  i^i  x )  =  (/) )
21 df-ne 2523 . . . . . . 7  |-  ( ( a  i^i  x )  =/=  (/)  <->  -.  ( a  i^i  x )  =  (/) )
2220, 21bitr4i 243 . . . . . 6  |-  ( -. 
[. ( a  i^i  x )  /  b ]. b  =  (/)  <->  ( a  i^i  x )  =/=  (/) )
2317, 22bitr3i 242 . . . . 5  |-  ( [. ( a  i^i  x
)  /  b ]. b  =/=  (/)  <->  ( a  i^i  x )  =/=  (/) )
249, 23anbi12i 678 . . . 4  |-  ( (
[. ( a  i^i  x )  /  b ]. b  C_  ( a  i^i  x )  /\  [. ( a  i^i  x
)  /  b ]. b  =/=  (/) )  <->  ( (
a  i^i  x )  C_  ( a  i^i  x
)  /\  ( a  i^i  x )  =/=  (/) ) )
256, 24bitri 240 . . 3  |-  ( [. ( a  i^i  x
)  /  b ]. ( b  C_  (
a  i^i  x )  /\  b  =/=  (/) )  <->  ( (
a  i^i  x )  C_  ( a  i^i  x
)  /\  ( a  i^i  x )  =/=  (/) ) )
26 df-rex 2625 . . . . . 6  |-  ( E. y  e.  b  ( b  i^i  y )  =  (/)  <->  E. y ( y  e.  b  /\  (
b  i^i  y )  =  (/) ) )
2726ax-gen 1546 . . . . 5  |-  A. b
( E. y  e.  b  ( b  i^i  y )  =  (/)  <->  E. y ( y  e.  b  /\  ( b  i^i  y )  =  (/) ) )
28 sbcbi 28048 . . . . 5  |-  ( ( a  i^i  x )  e.  _V  ->  ( A. b ( E. y  e.  b  ( b  i^i  y )  =  (/)  <->  E. y ( y  e.  b  /\  ( b  i^i  y )  =  (/) ) )  ->  ( [. ( a  i^i  x
)  /  b ]. E. y  e.  b 
( b  i^i  y
)  =  (/)  <->  [. ( a  i^i  x )  / 
b ]. E. y ( y  e.  b  /\  ( b  i^i  y
)  =  (/) ) ) ) )
292, 27, 28e00 28303 . . . 4  |-  ( [. ( a  i^i  x
)  /  b ]. E. y  e.  b 
( b  i^i  y
)  =  (/)  <->  [. ( a  i^i  x )  / 
b ]. E. y ( y  e.  b  /\  ( b  i^i  y
)  =  (/) ) )
30 sbcexg 3117 . . . . . . 7  |-  ( ( a  i^i  x )  e.  _V  ->  ( [. ( a  i^i  x
)  /  b ]. E. y ( y  e.  b  /\  ( b  i^i  y )  =  (/) )  <->  E. y [. (
a  i^i  x )  /  b ]. (
y  e.  b  /\  ( b  i^i  y
)  =  (/) ) ) )
3130bicomd 192 . . . . . 6  |-  ( ( a  i^i  x )  e.  _V  ->  ( E. y [. ( a  i^i  x )  / 
b ]. ( y  e.  b  /\  ( b  i^i  y )  =  (/) )  <->  [. ( a  i^i  x )  /  b ]. E. y ( y  e.  b  /\  (
b  i^i  y )  =  (/) ) ) )
322, 31e0_ 28307 . . . . 5  |-  ( E. y [. ( a  i^i  x )  / 
b ]. ( y  e.  b  /\  ( b  i^i  y )  =  (/) )  <->  [. ( a  i^i  x )  /  b ]. E. y ( y  e.  b  /\  (
b  i^i  y )  =  (/) ) )
33 sbcang 3110 . . . . . . . . . 10  |-  ( ( a  i^i  x )  e.  _V  ->  ( [. ( a  i^i  x
)  /  b ]. ( y  e.  b  /\  ( b  i^i  y )  =  (/) ) 
<->  ( [. ( a  i^i  x )  / 
b ]. y  e.  b  /\  [. ( a  i^i  x )  / 
b ]. ( b  i^i  y )  =  (/) ) ) )
342, 33e0_ 28307 . . . . . . . . 9  |-  ( [. ( a  i^i  x
)  /  b ]. ( y  e.  b  /\  ( b  i^i  y )  =  (/) ) 
<->  ( [. ( a  i^i  x )  / 
b ]. y  e.  b  /\  [. ( a  i^i  x )  / 
b ]. ( b  i^i  y )  =  (/) ) )
35 sbcel2gv 3127 . . . . . . . . . . 11  |-  ( ( a  i^i  x )  e.  _V  ->  ( [. ( a  i^i  x
)  /  b ]. y  e.  b  <->  y  e.  ( a  i^i  x
) ) )
362, 35e0_ 28307 . . . . . . . . . 10  |-  ( [. ( a  i^i  x
)  /  b ]. y  e.  b  <->  y  e.  ( a  i^i  x
) )
37 sbceqg 3173 . . . . . . . . . . . 12  |-  ( ( a  i^i  x )  e.  _V  ->  ( [. ( a  i^i  x
)  /  b ]. ( b  i^i  y
)  =  (/)  <->  [_ ( a  i^i  x )  / 
b ]_ ( b  i^i  y )  =  [_ ( a  i^i  x
)  /  b ]_ (/) ) )
382, 37e0_ 28307 . . . . . . . . . . 11  |-  ( [. ( a  i^i  x
)  /  b ]. ( b  i^i  y
)  =  (/)  <->  [_ ( a  i^i  x )  / 
b ]_ ( b  i^i  y )  =  [_ ( a  i^i  x
)  /  b ]_ (/) )
39 csbing 3452 . . . . . . . . . . . . . 14  |-  ( ( a  i^i  x )  e.  _V  ->  [_ (
a  i^i  x )  /  b ]_ (
b  i^i  y )  =  ( [_ (
a  i^i  x )  /  b ]_ b  i^i  [_ ( a  i^i  x )  /  b ]_ y ) )
402, 39e0_ 28307 . . . . . . . . . . . . 13  |-  [_ (
a  i^i  x )  /  b ]_ (
b  i^i  y )  =  ( [_ (
a  i^i  x )  /  b ]_ b  i^i  [_ ( a  i^i  x )  /  b ]_ y )
41 csbvarg 3184 . . . . . . . . . . . . . . 15  |-  ( ( a  i^i  x )  e.  _V  ->  [_ (
a  i^i  x )  /  b ]_ b  =  ( a  i^i  x ) )
422, 41e0_ 28307 . . . . . . . . . . . . . 14  |-  [_ (
a  i^i  x )  /  b ]_ b  =  ( a  i^i  x )
43 csbconstg 3171 . . . . . . . . . . . . . . 15  |-  ( ( a  i^i  x )  e.  _V  ->  [_ (
a  i^i  x )  /  b ]_ y  =  y )
442, 43e0_ 28307 . . . . . . . . . . . . . 14  |-  [_ (
a  i^i  x )  /  b ]_ y  =  y
4542, 44ineq12i 3444 . . . . . . . . . . . . 13  |-  ( [_ ( a  i^i  x
)  /  b ]_ b  i^i  [_ ( a  i^i  x )  /  b ]_ y )  =  ( ( a  i^i  x
)  i^i  y )
4640, 45eqtri 2378 . . . . . . . . . . . 12  |-  [_ (
a  i^i  x )  /  b ]_ (
b  i^i  y )  =  ( ( a  i^i  x )  i^i  y )
47 csbconstg 3171 . . . . . . . . . . . . 13  |-  ( ( a  i^i  x )  e.  _V  ->  [_ (
a  i^i  x )  /  b ]_ (/)  =  (/) )
482, 47e0_ 28307 . . . . . . . . . . . 12  |-  [_ (
a  i^i  x )  /  b ]_ (/)  =  (/)
4946, 48eqeq12i 2371 . . . . . . . . . . 11  |-  ( [_ ( a  i^i  x
)  /  b ]_ ( b  i^i  y
)  =  [_ (
a  i^i  x )  /  b ]_ (/)  <->  ( (
a  i^i  x )  i^i  y )  =  (/) )
5038, 49bitri 240 . . . . . . . . . 10  |-  ( [. ( a  i^i  x
)  /  b ]. ( b  i^i  y
)  =  (/)  <->  ( (
a  i^i  x )  i^i  y )  =  (/) )
5136, 50anbi12i 678 . . . . . . . . 9  |-  ( (
[. ( a  i^i  x )  /  b ]. y  e.  b  /\  [. ( a  i^i  x )  /  b ]. ( b  i^i  y
)  =  (/) )  <->  ( y  e.  ( a  i^i  x
)  /\  ( (
a  i^i  x )  i^i  y )  =  (/) ) )
5234, 51bitri 240 . . . . . . . 8  |-  ( [. ( a  i^i  x
)  /  b ]. ( y  e.  b  /\  ( b  i^i  y )  =  (/) ) 
<->  ( y  e.  ( a  i^i  x )  /\  ( ( a  i^i  x )  i^i  y )  =  (/) ) )
5352ax-gen 1546 . . . . . . 7  |-  A. y
( [. ( a  i^i  x )  /  b ]. ( y  e.  b  /\  ( b  i^i  y )  =  (/) ) 
<->  ( y  e.  ( a  i^i  x )  /\  ( ( a  i^i  x )  i^i  y )  =  (/) ) )
54 exbi 1581 . . . . . . 7  |-  ( A. y ( [. (
a  i^i  x )  /  b ]. (
y  e.  b  /\  ( b  i^i  y
)  =  (/) )  <->  ( y  e.  ( a  i^i  x
)  /\  ( (
a  i^i  x )  i^i  y )  =  (/) ) )  ->  ( E. y [. ( a  i^i  x )  / 
b ]. ( y  e.  b  /\  ( b  i^i  y )  =  (/) )  <->  E. y ( y  e.  ( a  i^i  x )  /\  (
( a  i^i  x
)  i^i  y )  =  (/) ) ) )
5553, 54e0_ 28307 . . . . . 6  |-  ( E. y [. ( a  i^i  x )  / 
b ]. ( y  e.  b  /\  ( b  i^i  y )  =  (/) )  <->  E. y ( y  e.  ( a  i^i  x )  /\  (
( a  i^i  x
)  i^i  y )  =  (/) ) )
56 df-rex 2625 . . . . . 6  |-  ( E. y  e.  ( a  i^i  x ) ( ( a  i^i  x
)  i^i  y )  =  (/)  <->  E. y ( y  e.  ( a  i^i  x )  /\  (
( a  i^i  x
)  i^i  y )  =  (/) ) )
5755, 56bitr4i 243 . . . . 5  |-  ( E. y [. ( a  i^i  x )  / 
b ]. ( y  e.  b  /\  ( b  i^i  y )  =  (/) )  <->  E. y  e.  ( a  i^i  x ) ( ( a  i^i  x )  i^i  y
)  =  (/) )
5832, 57bitr3i 242 . . . 4  |-  ( [. ( a  i^i  x
)  /  b ]. E. y ( y  e.  b  /\  ( b  i^i  y )  =  (/) )  <->  E. y  e.  ( a  i^i  x ) ( ( a  i^i  x )  i^i  y
)  =  (/) )
5929, 58bitri 240 . . 3  |-  ( [. ( a  i^i  x
)  /  b ]. E. y  e.  b 
( b  i^i  y
)  =  (/)  <->  E. y  e.  ( a  i^i  x
) ( ( a  i^i  x )  i^i  y )  =  (/) )
6025, 59imbi12i 316 . 2  |-  ( (
[. ( a  i^i  x )  /  b ]. ( b  C_  (
a  i^i  x )  /\  b  =/=  (/) )  ->  [. ( a  i^i  x
)  /  b ]. E. y  e.  b 
( b  i^i  y
)  =  (/) )  <->  ( (
( a  i^i  x
)  C_  ( a  i^i  x )  /\  (
a  i^i  x )  =/=  (/) )  ->  E. y  e.  ( a  i^i  x
) ( ( a  i^i  x )  i^i  y )  =  (/) ) )
614, 60bitri 240 1  |-  ( [. ( a  i^i  x
)  /  b ]. ( ( b  C_  ( a  i^i  x
)  /\  b  =/=  (/) )  ->  E. y  e.  b  ( b  i^i  y )  =  (/) ) 
<->  ( ( ( a  i^i  x )  C_  ( a  i^i  x
)  /\  ( a  i^i  x )  =/=  (/) )  ->  E. y  e.  (
a  i^i  x )
( ( a  i^i  x )  i^i  y
)  =  (/) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 176    /\ wa 358   A.wal 1540   E.wex 1541    = wceq 1642    e. wcel 1710    =/= wne 2521   E.wrex 2620   _Vcvv 2864   [.wsbc 3067   [_csb 3157    i^i cin 3227    C_ wss 3228   (/)c0 3531
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1930  ax-ext 2339  ax-sep 4222
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-clab 2345  df-cleq 2351  df-clel 2354  df-nfc 2483  df-ne 2523  df-rex 2625  df-rab 2628  df-v 2866  df-sbc 3068  df-csb 3158  df-in 3235  df-ss 3242
  Copyright terms: Public domain W3C validator