MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  onin Unicode version

Theorem onin 4423
Description: The intersection of two ordinal numbers is an ordinal number. (Contributed by NM, 7-Apr-1995.)
Assertion
Ref Expression
onin  |-  ( ( A  e.  On  /\  B  e.  On )  ->  ( A  i^i  B
)  e.  On )

Proof of Theorem onin
StepHypRef Expression
1 eloni 4402 . . 3  |-  ( A  e.  On  ->  Ord  A )
2 eloni 4402 . . 3  |-  ( B  e.  On  ->  Ord  B )
3 ordin 4422 . . 3  |-  ( ( Ord  A  /\  Ord  B )  ->  Ord  ( A  i^i  B ) )
41, 2, 3syl2an 463 . 2  |-  ( ( A  e.  On  /\  B  e.  On )  ->  Ord  ( A  i^i  B ) )
5 simpl 443 . . 3  |-  ( ( A  e.  On  /\  B  e.  On )  ->  A  e.  On )
6 inex1g 4157 . . 3  |-  ( A  e.  On  ->  ( A  i^i  B )  e. 
_V )
7 elong 4400 . . 3  |-  ( ( A  i^i  B )  e.  _V  ->  (
( A  i^i  B
)  e.  On  <->  Ord  ( A  i^i  B ) ) )
85, 6, 73syl 18 . 2  |-  ( ( A  e.  On  /\  B  e.  On )  ->  ( ( A  i^i  B )  e.  On  <->  Ord  ( A  i^i  B ) ) )
94, 8mpbird 223 1  |-  ( ( A  e.  On  /\  B  e.  On )  ->  ( A  i^i  B
)  e.  On )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    e. wcel 1684   _Vcvv 2788    i^i cin 3151   Ord word 4391   Oncon0 4392
This theorem is referenced by:  tfrlem5  6396  noreson  24314  ontopbas  24867
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-sep 4141
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ral 2548  df-rex 2549  df-v 2790  df-in 3159  df-ss 3166  df-uni 3828  df-tr 4114  df-po 4314  df-so 4315  df-fr 4352  df-we 4354  df-ord 4395  df-on 4396
  Copyright terms: Public domain W3C validator