MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  onintrab2 Unicode version

Theorem onintrab2 4724
Description: An existence condition equivalent to an intersection's being an ordinal number. (Contributed by NM, 6-Nov-2003.)
Assertion
Ref Expression
onintrab2  |-  ( E. x  e.  On  ph  <->  |^|
{ x  e.  On  |  ph }  e.  On )

Proof of Theorem onintrab2
StepHypRef Expression
1 intexrab 4302 . 2  |-  ( E. x  e.  On  ph  <->  |^|
{ x  e.  On  |  ph }  e.  _V )
2 onintrab 4723 . 2  |-  ( |^| { x  e.  On  |  ph }  e.  _V  <->  |^| { x  e.  On  |  ph }  e.  On )
31, 2bitri 241 1  |-  ( E. x  e.  On  ph  <->  |^|
{ x  e.  On  |  ph }  e.  On )
Colors of variables: wff set class
Syntax hints:    <-> wb 177    e. wcel 1717   E.wrex 2652   {crab 2655   _Vcvv 2901   |^|cint 3994   Oncon0 4524
This theorem is referenced by:  oeeulem  6782  cardmin2  7820  cardaleph  7905  cardmin  8374  nobndlem2  25373  nobndlem4  25375  nobndlem6  25377  nofulllem4  25385
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-13 1719  ax-14 1721  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2370  ax-sep 4273  ax-nul 4281  ax-pr 4346  ax-un 4643
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2244  df-mo 2245  df-clab 2376  df-cleq 2382  df-clel 2385  df-nfc 2514  df-ne 2554  df-ral 2656  df-rex 2657  df-rab 2660  df-v 2903  df-sbc 3107  df-dif 3268  df-un 3270  df-in 3272  df-ss 3279  df-pss 3281  df-nul 3574  df-if 3685  df-sn 3765  df-pr 3766  df-tp 3767  df-op 3768  df-uni 3960  df-int 3995  df-br 4156  df-opab 4210  df-tr 4246  df-eprel 4437  df-po 4446  df-so 4447  df-fr 4484  df-we 4486  df-ord 4527  df-on 4528
  Copyright terms: Public domain W3C validator