MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  onmindif Structured version   Unicode version

Theorem onmindif 4672
Description: When its successor is subtracted from a class of ordinal numbers, an ordinal number is less than the minimum of the resulting subclass. (Contributed by NM, 1-Dec-2003.)
Assertion
Ref Expression
onmindif  |-  ( ( A  C_  On  /\  B  e.  On )  ->  B  e.  |^| ( A  \  suc  B ) )

Proof of Theorem onmindif
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 eldif 3331 . . . 4  |-  ( x  e.  ( A  \  suc  B )  <->  ( x  e.  A  /\  -.  x  e.  suc  B ) )
2 ssel2 3344 . . . . . . . . 9  |-  ( ( A  C_  On  /\  x  e.  A )  ->  x  e.  On )
3 ontri1 4616 . . . . . . . . . . 11  |-  ( ( x  e.  On  /\  B  e.  On )  ->  ( x  C_  B  <->  -.  B  e.  x ) )
4 onsssuc 4670 . . . . . . . . . . 11  |-  ( ( x  e.  On  /\  B  e.  On )  ->  ( x  C_  B  <->  x  e.  suc  B ) )
53, 4bitr3d 248 . . . . . . . . . 10  |-  ( ( x  e.  On  /\  B  e.  On )  ->  ( -.  B  e.  x  <->  x  e.  suc  B ) )
65con1bid 322 . . . . . . . . 9  |-  ( ( x  e.  On  /\  B  e.  On )  ->  ( -.  x  e. 
suc  B  <->  B  e.  x
) )
72, 6sylan 459 . . . . . . . 8  |-  ( ( ( A  C_  On  /\  x  e.  A )  /\  B  e.  On )  ->  ( -.  x  e.  suc  B  <->  B  e.  x ) )
87biimpd 200 . . . . . . 7  |-  ( ( ( A  C_  On  /\  x  e.  A )  /\  B  e.  On )  ->  ( -.  x  e.  suc  B  ->  B  e.  x ) )
98exp31 589 . . . . . 6  |-  ( A 
C_  On  ->  ( x  e.  A  ->  ( B  e.  On  ->  ( -.  x  e.  suc  B  ->  B  e.  x
) ) ) )
109com23 75 . . . . 5  |-  ( A 
C_  On  ->  ( B  e.  On  ->  (
x  e.  A  -> 
( -.  x  e. 
suc  B  ->  B  e.  x ) ) ) )
1110imp4b 575 . . . 4  |-  ( ( A  C_  On  /\  B  e.  On )  ->  (
( x  e.  A  /\  -.  x  e.  suc  B )  ->  B  e.  x ) )
121, 11syl5bi 210 . . 3  |-  ( ( A  C_  On  /\  B  e.  On )  ->  (
x  e.  ( A 
\  suc  B )  ->  B  e.  x ) )
1312ralrimiv 2789 . 2  |-  ( ( A  C_  On  /\  B  e.  On )  ->  A. x  e.  ( A  \  suc  B ) B  e.  x
)
14 elintg 4059 . . 3  |-  ( B  e.  On  ->  ( B  e.  |^| ( A 
\  suc  B )  <->  A. x  e.  ( A 
\  suc  B ) B  e.  x )
)
1514adantl 454 . 2  |-  ( ( A  C_  On  /\  B  e.  On )  ->  ( B  e.  |^| ( A 
\  suc  B )  <->  A. x  e.  ( A 
\  suc  B ) B  e.  x )
)
1613, 15mpbird 225 1  |-  ( ( A  C_  On  /\  B  e.  On )  ->  B  e.  |^| ( A  \  suc  B ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 178    /\ wa 360    e. wcel 1726   A.wral 2706    \ cdif 3318    C_ wss 3321   |^|cint 4051   Oncon0 4582   suc csuc 4584
This theorem is referenced by:  unblem3  7362  fin23lem26  8206
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-14 1730  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2418  ax-sep 4331  ax-nul 4339  ax-pr 4404
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 938  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2286  df-mo 2287  df-clab 2424  df-cleq 2430  df-clel 2433  df-nfc 2562  df-ne 2602  df-ral 2711  df-rex 2712  df-rab 2715  df-v 2959  df-sbc 3163  df-dif 3324  df-un 3326  df-in 3328  df-ss 3335  df-pss 3337  df-nul 3630  df-if 3741  df-sn 3821  df-pr 3822  df-op 3824  df-uni 4017  df-int 4052  df-br 4214  df-opab 4268  df-tr 4304  df-eprel 4495  df-po 4504  df-so 4505  df-fr 4542  df-we 4544  df-ord 4585  df-on 4586  df-suc 4588
  Copyright terms: Public domain W3C validator