MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  onminsb Structured version   Unicode version

Theorem onminsb 4780
Description: If a property is true for some ordinal number, it is true for a minimal ordinal number. This version uses implicit substitution. Theorem Schema 62 of [Suppes] p. 228. (Contributed by NM, 3-Oct-2003.)
Hypotheses
Ref Expression
onminsb.1  |-  F/ x ps
onminsb.2  |-  ( x  =  |^| { x  e.  On  |  ph }  ->  ( ph  <->  ps )
)
Assertion
Ref Expression
onminsb  |-  ( E. x  e.  On  ph  ->  ps )

Proof of Theorem onminsb
StepHypRef Expression
1 rabn0 3648 . . 3  |-  ( { x  e.  On  |  ph }  =/=  (/)  <->  E. x  e.  On  ph )
2 ssrab2 3429 . . . 4  |-  { x  e.  On  |  ph }  C_  On
3 onint 4776 . . . 4  |-  ( ( { x  e.  On  |  ph }  C_  On  /\ 
{ x  e.  On  |  ph }  =/=  (/) )  ->  |^| { x  e.  On  |  ph }  e.  {
x  e.  On  |  ph } )
42, 3mpan 653 . . 3  |-  ( { x  e.  On  |  ph }  =/=  (/)  ->  |^| { x  e.  On  |  ph }  e.  { x  e.  On  |  ph } )
51, 4sylbir 206 . 2  |-  ( E. x  e.  On  ph  ->  |^| { x  e.  On  |  ph }  e.  { x  e.  On  |  ph } )
6 nfrab1 2889 . . . . 5  |-  F/_ x { x  e.  On  |  ph }
76nfint 4061 . . . 4  |-  F/_ x |^| { x  e.  On  |  ph }
8 nfcv 2573 . . . 4  |-  F/_ x On
9 onminsb.1 . . . 4  |-  F/ x ps
10 onminsb.2 . . . 4  |-  ( x  =  |^| { x  e.  On  |  ph }  ->  ( ph  <->  ps )
)
117, 8, 9, 10elrabf 3092 . . 3  |-  ( |^| { x  e.  On  |  ph }  e.  { x  e.  On  |  ph }  <->  (
|^| { x  e.  On  |  ph }  e.  On  /\ 
ps ) )
1211simprbi 452 . 2  |-  ( |^| { x  e.  On  |  ph }  e.  { x  e.  On  |  ph }  ->  ps )
135, 12syl 16 1  |-  ( E. x  e.  On  ph  ->  ps )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 178   F/wnf 1554    = wceq 1653    e. wcel 1726    =/= wne 2600   E.wrex 2707   {crab 2710    C_ wss 3321   (/)c0 3629   |^|cint 4051   Oncon0 4582
This theorem is referenced by:  oawordeulem  6798  rankidb  7727  cardmin2  7886  cardaleph  7971  cardmin  8440
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-13 1728  ax-14 1730  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2418  ax-sep 4331  ax-nul 4339  ax-pr 4404  ax-un 4702
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 938  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2286  df-mo 2287  df-clab 2424  df-cleq 2430  df-clel 2433  df-nfc 2562  df-ne 2602  df-ral 2711  df-rex 2712  df-rab 2715  df-v 2959  df-sbc 3163  df-dif 3324  df-un 3326  df-in 3328  df-ss 3335  df-pss 3337  df-nul 3630  df-if 3741  df-sn 3821  df-pr 3822  df-tp 3823  df-op 3824  df-uni 4017  df-int 4052  df-br 4214  df-opab 4268  df-tr 4304  df-eprel 4495  df-po 4504  df-so 4505  df-fr 4542  df-we 4544  df-ord 4585  df-on 4586
  Copyright terms: Public domain W3C validator