MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  onn0 Unicode version

Theorem onn0 4456
Description: The class of all ordinal numbers in not empty. (Contributed by NM, 17-Sep-1995.)
Assertion
Ref Expression
onn0  |-  On  =/=  (/)

Proof of Theorem onn0
StepHypRef Expression
1 0elon 4445 . 2  |-  (/)  e.  On
2 ne0i 3461 . 2  |-  ( (/)  e.  On  ->  On  =/=  (/) )
31, 2ax-mp 8 1  |-  On  =/=  (/)
Colors of variables: wff set class
Syntax hints:    e. wcel 1684    =/= wne 2446   (/)c0 3455   Oncon0 4392
This theorem is referenced by:  limon  4627
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-nul 4149
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-rex 2549  df-rab 2552  df-v 2790  df-dif 3155  df-in 3159  df-ss 3166  df-nul 3456  df-pw 3627  df-uni 3828  df-tr 4114  df-po 4314  df-so 4315  df-fr 4352  df-we 4354  df-ord 4395  df-on 4396
  Copyright terms: Public domain W3C validator