Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  onnbtwn Structured version   Unicode version

Theorem onnbtwn 4665
 Description: There is no set between an ordinal number and its successor. Proposition 7.25 of [TakeutiZaring] p. 41. (Contributed by NM, 9-Jun-1994.)
Assertion
Ref Expression
onnbtwn

Proof of Theorem onnbtwn
StepHypRef Expression
1 eloni 4583 . 2
2 ordnbtwn 4664 . 2
31, 2syl 16 1
 Colors of variables: wff set class Syntax hints:   wn 3   wi 4   wa 359   wcel 1725   word 4572  con0 4573   csuc 4575 This theorem is referenced by:  ordunisuc2  4816  oalimcl  6795  omlimcl  6813  oneo  6816  nnneo  6886 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-sep 4322  ax-nul 4330  ax-pr 4395 This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-ral 2702  df-rex 2703  df-rab 2706  df-v 2950  df-sbc 3154  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-nul 3621  df-if 3732  df-sn 3812  df-pr 3813  df-op 3815  df-uni 4008  df-br 4205  df-opab 4259  df-tr 4295  df-eprel 4486  df-po 4495  df-so 4496  df-fr 4533  df-we 4535  df-ord 4576  df-on 4577  df-suc 4579
 Copyright terms: Public domain W3C validator