MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  onoviun Structured version   Unicode version

Theorem onoviun 6634
Description: A variant of onovuni 6633 with indexed unions. (Contributed by Eric Schmidt, 26-May-2009.) (Proof shortened by Mario Carneiro, 5-Dec-2016.)
Hypotheses
Ref Expression
onovuni.1  |-  ( Lim  y  ->  ( A F y )  = 
U_ x  e.  y  ( A F x ) )
onovuni.2  |-  ( ( x  e.  On  /\  y  e.  On  /\  x  C_  y )  ->  ( A F x )  C_  ( A F y ) )
Assertion
Ref Expression
onoviun  |-  ( ( K  e.  T  /\  A. z  e.  K  L  e.  On  /\  K  =/=  (/) )  ->  ( A F U_ z  e.  K  L )  = 
U_ z  e.  K  ( A F L ) )
Distinct variable groups:    x, y,
z, A    x, F, y, z    x, K, y, z    x, L, y
Allowed substitution hints:    T( x, y, z)    L( z)

Proof of Theorem onoviun
Dummy variable  w is distinct from all other variables.
StepHypRef Expression
1 dfiun3g 5151 . . . 4  |-  ( A. z  e.  K  L  e.  On  ->  U_ z  e.  K  L  =  U. ran  ( z  e.  K  |->  L ) )
213ad2ant2 980 . . 3  |-  ( ( K  e.  T  /\  A. z  e.  K  L  e.  On  /\  K  =/=  (/) )  ->  U_ z  e.  K  L  =  U. ran  ( z  e.  K  |->  L ) )
32oveq2d 6126 . 2  |-  ( ( K  e.  T  /\  A. z  e.  K  L  e.  On  /\  K  =/=  (/) )  ->  ( A F U_ z  e.  K  L )  =  ( A F U. ran  ( z  e.  K  |->  L ) ) )
4 simp1 958 . . . 4  |-  ( ( K  e.  T  /\  A. z  e.  K  L  e.  On  /\  K  =/=  (/) )  ->  K  e.  T )
5 mptexg 5994 . . . 4  |-  ( K  e.  T  ->  (
z  e.  K  |->  L )  e.  _V )
6 rnexg 5160 . . . 4  |-  ( ( z  e.  K  |->  L )  e.  _V  ->  ran  ( z  e.  K  |->  L )  e.  _V )
74, 5, 63syl 19 . . 3  |-  ( ( K  e.  T  /\  A. z  e.  K  L  e.  On  /\  K  =/=  (/) )  ->  ran  (
z  e.  K  |->  L )  e.  _V )
8 simp2 959 . . . . 5  |-  ( ( K  e.  T  /\  A. z  e.  K  L  e.  On  /\  K  =/=  (/) )  ->  A. z  e.  K  L  e.  On )
9 eqid 2442 . . . . . 6  |-  ( z  e.  K  |->  L )  =  ( z  e.  K  |->  L )
109fmpt 5919 . . . . 5  |-  ( A. z  e.  K  L  e.  On  <->  ( z  e.  K  |->  L ) : K --> On )
118, 10sylib 190 . . . 4  |-  ( ( K  e.  T  /\  A. z  e.  K  L  e.  On  /\  K  =/=  (/) )  ->  ( z  e.  K  |->  L ) : K --> On )
12 frn 5626 . . . 4  |-  ( ( z  e.  K  |->  L ) : K --> On  ->  ran  ( z  e.  K  |->  L )  C_  On )
1311, 12syl 16 . . 3  |-  ( ( K  e.  T  /\  A. z  e.  K  L  e.  On  /\  K  =/=  (/) )  ->  ran  (
z  e.  K  |->  L )  C_  On )
14 dmmptg 5396 . . . . . 6  |-  ( A. z  e.  K  L  e.  On  ->  dom  ( z  e.  K  |->  L )  =  K )
15143ad2ant2 980 . . . . 5  |-  ( ( K  e.  T  /\  A. z  e.  K  L  e.  On  /\  K  =/=  (/) )  ->  dom  (
z  e.  K  |->  L )  =  K )
16 simp3 960 . . . . 5  |-  ( ( K  e.  T  /\  A. z  e.  K  L  e.  On  /\  K  =/=  (/) )  ->  K  =/=  (/) )
1715, 16eqnetrd 2625 . . . 4  |-  ( ( K  e.  T  /\  A. z  e.  K  L  e.  On  /\  K  =/=  (/) )  ->  dom  (
z  e.  K  |->  L )  =/=  (/) )
18 dm0rn0 5115 . . . . 5  |-  ( dom  ( z  e.  K  |->  L )  =  (/)  <->  ran  ( z  e.  K  |->  L )  =  (/) )
1918necon3bii 2639 . . . 4  |-  ( dom  ( z  e.  K  |->  L )  =/=  (/)  <->  ran  ( z  e.  K  |->  L )  =/=  (/) )
2017, 19sylib 190 . . 3  |-  ( ( K  e.  T  /\  A. z  e.  K  L  e.  On  /\  K  =/=  (/) )  ->  ran  (
z  e.  K  |->  L )  =/=  (/) )
21 onovuni.1 . . . 4  |-  ( Lim  y  ->  ( A F y )  = 
U_ x  e.  y  ( A F x ) )
22 onovuni.2 . . . 4  |-  ( ( x  e.  On  /\  y  e.  On  /\  x  C_  y )  ->  ( A F x )  C_  ( A F y ) )
2321, 22onovuni 6633 . . 3  |-  ( ( ran  ( z  e.  K  |->  L )  e. 
_V  /\  ran  ( z  e.  K  |->  L ) 
C_  On  /\  ran  (
z  e.  K  |->  L )  =/=  (/) )  -> 
( A F U. ran  ( z  e.  K  |->  L ) )  = 
U_ x  e.  ran  ( z  e.  K  |->  L ) ( A F x ) )
247, 13, 20, 23syl3anc 1185 . 2  |-  ( ( K  e.  T  /\  A. z  e.  K  L  e.  On  /\  K  =/=  (/) )  ->  ( A F U. ran  (
z  e.  K  |->  L ) )  =  U_ x  e.  ran  ( z  e.  K  |->  L ) ( A F x ) )
25 oveq2 6118 . . . . . . 7  |-  ( x  =  L  ->  ( A F x )  =  ( A F L ) )
2625eleq2d 2509 . . . . . 6  |-  ( x  =  L  ->  (
w  e.  ( A F x )  <->  w  e.  ( A F L ) ) )
279, 26rexrnmpt 5908 . . . . 5  |-  ( A. z  e.  K  L  e.  On  ->  ( E. x  e.  ran  ( z  e.  K  |->  L ) w  e.  ( A F x )  <->  E. z  e.  K  w  e.  ( A F L ) ) )
28273ad2ant2 980 . . . 4  |-  ( ( K  e.  T  /\  A. z  e.  K  L  e.  On  /\  K  =/=  (/) )  ->  ( E. x  e.  ran  (
z  e.  K  |->  L ) w  e.  ( A F x )  <->  E. z  e.  K  w  e.  ( A F L ) ) )
29 eliun 4121 . . . 4  |-  ( w  e.  U_ x  e. 
ran  ( z  e.  K  |->  L ) ( A F x )  <->  E. x  e.  ran  ( z  e.  K  |->  L ) w  e.  ( A F x ) )
30 eliun 4121 . . . 4  |-  ( w  e.  U_ z  e.  K  ( A F L )  <->  E. z  e.  K  w  e.  ( A F L ) )
3128, 29, 303bitr4g 281 . . 3  |-  ( ( K  e.  T  /\  A. z  e.  K  L  e.  On  /\  K  =/=  (/) )  ->  ( w  e.  U_ x  e. 
ran  ( z  e.  K  |->  L ) ( A F x )  <-> 
w  e.  U_ z  e.  K  ( A F L ) ) )
3231eqrdv 2440 . 2  |-  ( ( K  e.  T  /\  A. z  e.  K  L  e.  On  /\  K  =/=  (/) )  ->  U_ x  e.  ran  ( z  e.  K  |->  L ) ( A F x )  =  U_ z  e.  K  ( A F L ) )
333, 24, 323eqtrd 2478 1  |-  ( ( K  e.  T  /\  A. z  e.  K  L  e.  On  /\  K  =/=  (/) )  ->  ( A F U_ z  e.  K  L )  = 
U_ z  e.  K  ( A F L ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 178    /\ w3a 937    = wceq 1653    e. wcel 1727    =/= wne 2605   A.wral 2711   E.wrex 2712   _Vcvv 2962    C_ wss 3306   (/)c0 3613   U.cuni 4039   U_ciun 4117    e. cmpt 4291   Oncon0 4610   Lim wlim 4611   dom cdm 4907   ran crn 4908   -->wf 5479  (class class class)co 6110
This theorem is referenced by:  oeoalem  6868  oeoelem  6870
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1668  ax-8 1689  ax-13 1729  ax-14 1731  ax-6 1746  ax-7 1751  ax-11 1763  ax-12 1953  ax-ext 2423  ax-rep 4345  ax-sep 4355  ax-nul 4363  ax-pow 4406  ax-pr 4432  ax-un 4730
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 938  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2291  df-mo 2292  df-clab 2429  df-cleq 2435  df-clel 2438  df-nfc 2567  df-ne 2607  df-ral 2716  df-rex 2717  df-reu 2718  df-rab 2720  df-v 2964  df-sbc 3168  df-csb 3268  df-dif 3309  df-un 3311  df-in 3313  df-ss 3320  df-pss 3322  df-nul 3614  df-if 3764  df-sn 3844  df-pr 3845  df-tp 3846  df-op 3847  df-uni 4040  df-iun 4119  df-br 4238  df-opab 4292  df-mpt 4293  df-tr 4328  df-eprel 4523  df-id 4527  df-po 4532  df-so 4533  df-fr 4570  df-we 4572  df-ord 4613  df-on 4614  df-lim 4615  df-xp 4913  df-rel 4914  df-cnv 4915  df-co 4916  df-dm 4917  df-rn 4918  df-res 4919  df-ima 4920  df-iota 5447  df-fun 5485  df-fn 5486  df-f 5487  df-f1 5488  df-fo 5489  df-f1o 5490  df-fv 5491  df-ov 6113
  Copyright terms: Public domain W3C validator