MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  onovuni Unicode version

Theorem onovuni 6375
Description: A variant of onfununi 6374 for operations. (Contributed by Eric Schmidt, 26-May-2009.) (Revised by Mario Carneiro, 11-Sep-2015.)
Hypotheses
Ref Expression
onovuni.1  |-  ( Lim  y  ->  ( A F y )  = 
U_ x  e.  y  ( A F x ) )
onovuni.2  |-  ( ( x  e.  On  /\  y  e.  On  /\  x  C_  y )  ->  ( A F x )  C_  ( A F y ) )
Assertion
Ref Expression
onovuni  |-  ( ( S  e.  T  /\  S  C_  On  /\  S  =/=  (/) )  ->  ( A F U. S )  =  U_ x  e.  S  ( A F x ) )
Distinct variable groups:    x, y, A    x, F, y    x, S, y    x, T
Allowed substitution hint:    T( y)

Proof of Theorem onovuni
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 onovuni.1 . . . 4  |-  ( Lim  y  ->  ( A F y )  = 
U_ x  e.  y  ( A F x ) )
2 vex 2804 . . . . 5  |-  y  e. 
_V
3 oveq2 5882 . . . . . 6  |-  ( z  =  y  ->  ( A F z )  =  ( A F y ) )
4 eqid 2296 . . . . . 6  |-  ( z  e.  _V  |->  ( A F z ) )  =  ( z  e. 
_V  |->  ( A F z ) )
5 ovex 5899 . . . . . 6  |-  ( A F y )  e. 
_V
63, 4, 5fvmpt 5618 . . . . 5  |-  ( y  e.  _V  ->  (
( z  e.  _V  |->  ( A F z ) ) `  y )  =  ( A F y ) )
72, 6ax-mp 8 . . . 4  |-  ( ( z  e.  _V  |->  ( A F z ) ) `  y )  =  ( A F y )
8 vex 2804 . . . . . . 7  |-  x  e. 
_V
9 oveq2 5882 . . . . . . . 8  |-  ( z  =  x  ->  ( A F z )  =  ( A F x ) )
10 ovex 5899 . . . . . . . 8  |-  ( A F x )  e. 
_V
119, 4, 10fvmpt 5618 . . . . . . 7  |-  ( x  e.  _V  ->  (
( z  e.  _V  |->  ( A F z ) ) `  x )  =  ( A F x ) )
128, 11ax-mp 8 . . . . . 6  |-  ( ( z  e.  _V  |->  ( A F z ) ) `  x )  =  ( A F x )
1312a1i 10 . . . . 5  |-  ( x  e.  y  ->  (
( z  e.  _V  |->  ( A F z ) ) `  x )  =  ( A F x ) )
1413iuneq2i 3939 . . . 4  |-  U_ x  e.  y  ( (
z  e.  _V  |->  ( A F z ) ) `  x )  =  U_ x  e.  y  ( A F x )
151, 7, 143eqtr4g 2353 . . 3  |-  ( Lim  y  ->  ( (
z  e.  _V  |->  ( A F z ) ) `  y )  =  U_ x  e.  y  ( ( z  e.  _V  |->  ( A F z ) ) `
 x ) )
16 onovuni.2 . . . 4  |-  ( ( x  e.  On  /\  y  e.  On  /\  x  C_  y )  ->  ( A F x )  C_  ( A F y ) )
1716, 12, 73sstr4g 3232 . . 3  |-  ( ( x  e.  On  /\  y  e.  On  /\  x  C_  y )  ->  (
( z  e.  _V  |->  ( A F z ) ) `  x ) 
C_  ( ( z  e.  _V  |->  ( A F z ) ) `
 y ) )
1815, 17onfununi 6374 . 2  |-  ( ( S  e.  T  /\  S  C_  On  /\  S  =/=  (/) )  ->  (
( z  e.  _V  |->  ( A F z ) ) `  U. S
)  =  U_ x  e.  S  ( (
z  e.  _V  |->  ( A F z ) ) `  x ) )
19 uniexg 4533 . . . 4  |-  ( S  e.  T  ->  U. S  e.  _V )
20 oveq2 5882 . . . . 5  |-  ( z  =  U. S  -> 
( A F z )  =  ( A F U. S ) )
21 ovex 5899 . . . . 5  |-  ( A F U. S )  e.  _V
2220, 4, 21fvmpt 5618 . . . 4  |-  ( U. S  e.  _V  ->  ( ( z  e.  _V  |->  ( A F z ) ) `  U. S
)  =  ( A F U. S ) )
2319, 22syl 15 . . 3  |-  ( S  e.  T  ->  (
( z  e.  _V  |->  ( A F z ) ) `  U. S
)  =  ( A F U. S ) )
24233ad2ant1 976 . 2  |-  ( ( S  e.  T  /\  S  C_  On  /\  S  =/=  (/) )  ->  (
( z  e.  _V  |->  ( A F z ) ) `  U. S
)  =  ( A F U. S ) )
2512a1i 10 . . . 4  |-  ( x  e.  S  ->  (
( z  e.  _V  |->  ( A F z ) ) `  x )  =  ( A F x ) )
2625iuneq2i 3939 . . 3  |-  U_ x  e.  S  ( (
z  e.  _V  |->  ( A F z ) ) `  x )  =  U_ x  e.  S  ( A F x )
2726a1i 10 . 2  |-  ( ( S  e.  T  /\  S  C_  On  /\  S  =/=  (/) )  ->  U_ x  e.  S  ( (
z  e.  _V  |->  ( A F z ) ) `  x )  =  U_ x  e.  S  ( A F x ) )
2818, 24, 273eqtr3d 2336 1  |-  ( ( S  e.  T  /\  S  C_  On  /\  S  =/=  (/) )  ->  ( A F U. S )  =  U_ x  e.  S  ( A F x ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ w3a 934    = wceq 1632    e. wcel 1696    =/= wne 2459   _Vcvv 2801    C_ wss 3165   (/)c0 3468   U.cuni 3843   U_ciun 3921    e. cmpt 4093   Oncon0 4408   Lim wlim 4409   ` cfv 5271  (class class class)co 5874
This theorem is referenced by:  onoviun  6376
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-sep 4157  ax-nul 4165  ax-pr 4230  ax-un 4528
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-ral 2561  df-rex 2562  df-rab 2565  df-v 2803  df-sbc 3005  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pss 3181  df-nul 3469  df-if 3579  df-sn 3659  df-pr 3660  df-tp 3661  df-op 3662  df-uni 3844  df-iun 3923  df-br 4040  df-opab 4094  df-mpt 4095  df-tr 4130  df-eprel 4321  df-id 4325  df-po 4330  df-so 4331  df-fr 4368  df-we 4370  df-ord 4411  df-on 4412  df-lim 4413  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-iota 5235  df-fun 5273  df-fv 5279  df-ov 5877
  Copyright terms: Public domain W3C validator