MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  onsssuc Structured version   Unicode version

Theorem onsssuc 4670
Description: A subset of an ordinal number belongs to its successor. (Contributed by NM, 15-Sep-1995.)
Assertion
Ref Expression
onsssuc  |-  ( ( A  e.  On  /\  B  e.  On )  ->  ( A  C_  B  <->  A  e.  suc  B ) )

Proof of Theorem onsssuc
StepHypRef Expression
1 eloni 4592 . 2  |-  ( B  e.  On  ->  Ord  B )
2 ordsssuc 4669 . 2  |-  ( ( A  e.  On  /\  Ord  B )  ->  ( A  C_  B  <->  A  e.  suc  B ) )
31, 2sylan2 462 1  |-  ( ( A  e.  On  /\  B  e.  On )  ->  ( A  C_  B  <->  A  e.  suc  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 178    /\ wa 360    e. wcel 1726    C_ wss 3321   Ord word 4581   Oncon0 4582   suc csuc 4584
This theorem is referenced by:  ordsssuc2  4671  onmindif  4672  tfindsg  4841  dfom2  4848  findsg  4873  ondif2  6747  oeeui  6846  cantnflem1  7646  rankr1bg  7730  rankr1c  7748  cofsmo  8150  cfsmolem  8151  cfcof  8155  fin1a2lem9  8289  alephreg  8458  winainflem  8569  nobndlem8  25655  onsuct0  26192  onint1  26200
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-14 1730  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2418  ax-sep 4331  ax-nul 4339  ax-pr 4404
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 938  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2286  df-mo 2287  df-clab 2424  df-cleq 2430  df-clel 2433  df-nfc 2562  df-ne 2602  df-ral 2711  df-rex 2712  df-rab 2715  df-v 2959  df-sbc 3163  df-dif 3324  df-un 3326  df-in 3328  df-ss 3335  df-pss 3337  df-nul 3630  df-if 3741  df-sn 3821  df-pr 3822  df-op 3824  df-uni 4017  df-br 4214  df-opab 4268  df-tr 4304  df-eprel 4495  df-po 4504  df-so 4505  df-fr 4542  df-we 4544  df-ord 4585  df-on 4586  df-suc 4588
  Copyright terms: Public domain W3C validator