Users' Mathboxes Mathbox for Chen-Pang He < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  onsucconi Unicode version

Theorem onsucconi 24876
Description: A successor ordinal number is a connected topology. (Contributed by Chen-Pang He, 16-Oct-2015.)
Hypothesis
Ref Expression
onsucconi.1  |-  A  e.  On
Assertion
Ref Expression
onsucconi  |-  suc  A  e.  Con

Proof of Theorem onsucconi
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 onsucconi.1 . . 3  |-  A  e.  On
2 onsuctop 24872 . . 3  |-  ( A  e.  On  ->  suc  A  e.  Top )
31, 2ax-mp 8 . 2  |-  suc  A  e.  Top
4 elin 3358 . . . 4  |-  ( x  e.  ( suc  A  i^i  ( Clsd `  suc  A ) )  <->  ( x  e.  suc  A  /\  x  e.  ( Clsd `  suc  A ) ) )
5 elsuci 4458 . . . . 5  |-  ( x  e.  suc  A  -> 
( x  e.  A  \/  x  =  A
) )
61onunisuci 4506 . . . . . . 7  |-  U. suc  A  =  A
76eqcomi 2287 . . . . . 6  |-  A  = 
U. suc  A
87cldopn 16768 . . . . 5  |-  ( x  e.  ( Clsd `  suc  A )  ->  ( A  \  x )  e.  suc  A )
91onsuci 4629 . . . . . . . . . 10  |-  suc  A  e.  On
109oneli 4500 . . . . . . . . 9  |-  ( ( A  \  x )  e.  suc  A  -> 
( A  \  x
)  e.  On )
11 elndif 3300 . . . . . . . . . . . 12  |-  ( (/)  e.  x  ->  -.  (/)  e.  ( A  \  x ) )
12 on0eln0 4447 . . . . . . . . . . . . . 14  |-  ( ( A  \  x )  e.  On  ->  ( (/) 
e.  ( A  \  x )  <->  ( A  \  x )  =/=  (/) ) )
1312biimprd 214 . . . . . . . . . . . . 13  |-  ( ( A  \  x )  e.  On  ->  (
( A  \  x
)  =/=  (/)  ->  (/)  e.  ( A  \  x ) ) )
1413necon1bd 2514 . . . . . . . . . . . 12  |-  ( ( A  \  x )  e.  On  ->  ( -.  (/)  e.  ( A 
\  x )  -> 
( A  \  x
)  =  (/) ) )
15 ssdif0 3513 . . . . . . . . . . . . 13  |-  ( A 
C_  x  <->  ( A  \  x )  =  (/) )
161onssneli 4502 . . . . . . . . . . . . 13  |-  ( A 
C_  x  ->  -.  x  e.  A )
1715, 16sylbir 204 . . . . . . . . . . . 12  |-  ( ( A  \  x )  =  (/)  ->  -.  x  e.  A )
1811, 14, 17syl56 30 . . . . . . . . . . 11  |-  ( ( A  \  x )  e.  On  ->  ( (/) 
e.  x  ->  -.  x  e.  A )
)
1918con2d 107 . . . . . . . . . 10  |-  ( ( A  \  x )  e.  On  ->  (
x  e.  A  ->  -.  (/)  e.  x ) )
201oneli 4500 . . . . . . . . . . . 12  |-  ( x  e.  A  ->  x  e.  On )
21 on0eln0 4447 . . . . . . . . . . . . 13  |-  ( x  e.  On  ->  ( (/) 
e.  x  <->  x  =/=  (/) ) )
2221biimprd 214 . . . . . . . . . . . 12  |-  ( x  e.  On  ->  (
x  =/=  (/)  ->  (/)  e.  x
) )
2320, 22syl 15 . . . . . . . . . . 11  |-  ( x  e.  A  ->  (
x  =/=  (/)  ->  (/)  e.  x
) )
2423necon1bd 2514 . . . . . . . . . 10  |-  ( x  e.  A  ->  ( -.  (/)  e.  x  ->  x  =  (/) ) )
2519, 24sylcom 25 . . . . . . . . 9  |-  ( ( A  \  x )  e.  On  ->  (
x  e.  A  ->  x  =  (/) ) )
2610, 25syl 15 . . . . . . . 8  |-  ( ( A  \  x )  e.  suc  A  -> 
( x  e.  A  ->  x  =  (/) ) )
2726orim1d 812 . . . . . . 7  |-  ( ( A  \  x )  e.  suc  A  -> 
( ( x  e.  A  \/  x  =  A )  ->  (
x  =  (/)  \/  x  =  A ) ) )
2827impcom 419 . . . . . 6  |-  ( ( ( x  e.  A  \/  x  =  A
)  /\  ( A  \  x )  e.  suc  A )  ->  ( x  =  (/)  \/  x  =  A ) )
29 vex 2791 . . . . . . 7  |-  x  e. 
_V
3029elpr 3658 . . . . . 6  |-  ( x  e.  { (/) ,  A } 
<->  ( x  =  (/)  \/  x  =  A ) )
3128, 30sylibr 203 . . . . 5  |-  ( ( ( x  e.  A  \/  x  =  A
)  /\  ( A  \  x )  e.  suc  A )  ->  x  e.  {
(/) ,  A }
)
325, 8, 31syl2an 463 . . . 4  |-  ( ( x  e.  suc  A  /\  x  e.  ( Clsd `  suc  A ) )  ->  x  e.  {
(/) ,  A }
)
334, 32sylbi 187 . . 3  |-  ( x  e.  ( suc  A  i^i  ( Clsd `  suc  A ) )  ->  x  e.  { (/) ,  A }
)
3433ssriv 3184 . 2  |-  ( suc 
A  i^i  ( Clsd ` 
suc  A ) ) 
C_  { (/) ,  A }
357iscon2 17140 . 2  |-  ( suc 
A  e.  Con  <->  ( suc  A  e.  Top  /\  ( suc  A  i^i  ( Clsd `  suc  A ) ) 
C_  { (/) ,  A } ) )
363, 34, 35mpbir2an 886 1  |-  suc  A  e.  Con
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    \/ wo 357    /\ wa 358    = wceq 1623    e. wcel 1684    =/= wne 2446    \ cdif 3149    i^i cin 3151    C_ wss 3152   (/)c0 3455   {cpr 3641   U.cuni 3827   Oncon0 4392   suc csuc 4394   ` cfv 5255   Topctop 16631   Clsdccld 16753   Conccon 17137
This theorem is referenced by:  onsuccon  24877
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-rex 2549  df-rab 2552  df-v 2790  df-sbc 2992  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-we 4354  df-ord 4395  df-on 4396  df-suc 4398  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-iota 5219  df-fun 5257  df-fn 5258  df-fv 5263  df-topgen 13344  df-top 16636  df-bases 16638  df-cld 16756  df-con 17138
  Copyright terms: Public domain W3C validator