Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  onsuci Unicode version

Theorem onsuci 4629
 Description: The successor of an ordinal number is an ordinal number. Corollary 7N(c) of [Enderton] p. 193. (Contributed by NM, 12-Jun-1994.)
Hypothesis
Ref Expression
onssi.1
Assertion
Ref Expression
onsuci

Proof of Theorem onsuci
StepHypRef Expression
1 onssi.1 . 2
2 suceloni 4604 . 2
31, 2ax-mp 8 1
 Colors of variables: wff set class Syntax hints:   wcel 1684  con0 4392   csuc 4394 This theorem is referenced by:  1on  6486  2on  6487  3on  6489  4on  6490  tz9.12lem2  7460  tz9.12  7462  rankpwi  7495  bndrank  7513  rankval4  7539  rankxplim3  7551  cfcof  7900  ttukeylem6  8141  onsucconi  24876  onsucsuccmpi  24882 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-sep 4141  ax-nul 4149  ax-pr 4214  ax-un 4512 This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-rex 2549  df-rab 2552  df-v 2790  df-sbc 2992  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-br 4024  df-opab 4078  df-tr 4114  df-eprel 4305  df-po 4314  df-so 4315  df-fr 4352  df-we 4354  df-ord 4395  df-on 4396  df-suc 4398
 Copyright terms: Public domain W3C validator