Users' Mathboxes Mathbox for Chen-Pang He < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ontgval Unicode version

Theorem ontgval 24870
Description: The topology generated from an ordinal number  B is  suc  U. B. (Contributed by Chen-Pang He, 10-Oct-2015.)
Assertion
Ref Expression
ontgval  |-  ( B  e.  On  ->  ( topGen `
 B )  =  suc  U. B )

Proof of Theorem ontgval
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 inex1g 4157 . . . . . . 7  |-  ( B  e.  On  ->  ( B  i^i  ~P x )  e.  _V )
2 onss 4582 . . . . . . . 8  |-  ( B  e.  On  ->  B  C_  On )
3 ssinss1 3397 . . . . . . . 8  |-  ( B 
C_  On  ->  ( B  i^i  ~P x ) 
C_  On )
42, 3syl 15 . . . . . . 7  |-  ( B  e.  On  ->  ( B  i^i  ~P x ) 
C_  On )
5 ssonuni 4578 . . . . . . 7  |-  ( ( B  i^i  ~P x
)  e.  _V  ->  ( ( B  i^i  ~P x )  C_  On  ->  U. ( B  i^i  ~P x )  e.  On ) )
61, 4, 5sylc 56 . . . . . 6  |-  ( B  e.  On  ->  U. ( B  i^i  ~P x )  e.  On )
7 eltg4i 16698 . . . . . . 7  |-  ( x  e.  ( topGen `  B
)  ->  x  =  U. ( B  i^i  ~P x ) )
8 eleq1 2343 . . . . . . . 8  |-  ( x  =  U. ( B  i^i  ~P x )  ->  ( x  e.  On  <->  U. ( B  i^i  ~P x )  e.  On ) )
98biimprd 214 . . . . . . 7  |-  ( x  =  U. ( B  i^i  ~P x )  ->  ( U. ( B  i^i  ~P x )  e.  On  ->  x  e.  On ) )
107, 9syl 15 . . . . . 6  |-  ( x  e.  ( topGen `  B
)  ->  ( U. ( B  i^i  ~P x
)  e.  On  ->  x  e.  On ) )
116, 10syl5com 26 . . . . 5  |-  ( B  e.  On  ->  (
x  e.  ( topGen `  B )  ->  x  e.  On ) )
12 onuni 4584 . . . . . 6  |-  ( B  e.  On  ->  U. B  e.  On )
13 suceloni 4604 . . . . . 6  |-  ( U. B  e.  On  ->  suc  U. B  e.  On )
1412, 13syl 15 . . . . 5  |-  ( B  e.  On  ->  suc  U. B  e.  On )
1511, 14jctird 528 . . . 4  |-  ( B  e.  On  ->  (
x  e.  ( topGen `  B )  ->  (
x  e.  On  /\  suc  U. B  e.  On ) ) )
16 tg1 16702 . . . . . 6  |-  ( x  e.  ( topGen `  B
)  ->  x  C_  U. B
)
1716a1i 10 . . . . 5  |-  ( B  e.  On  ->  (
x  e.  ( topGen `  B )  ->  x  C_ 
U. B ) )
18 sucidg 4470 . . . . . 6  |-  ( U. B  e.  On  ->  U. B  e.  suc  U. B )
1912, 18syl 15 . . . . 5  |-  ( B  e.  On  ->  U. B  e.  suc  U. B )
2017, 19jctird 528 . . . 4  |-  ( B  e.  On  ->  (
x  e.  ( topGen `  B )  ->  (
x  C_  U. B  /\  U. B  e.  suc  U. B ) ) )
21 ontr2 4439 . . . 4  |-  ( ( x  e.  On  /\  suc  U. B  e.  On )  ->  ( ( x 
C_  U. B  /\  U. B  e.  suc  U. B
)  ->  x  e.  suc  U. B ) )
2215, 20, 21syl6c 60 . . 3  |-  ( B  e.  On  ->  (
x  e.  ( topGen `  B )  ->  x  e.  suc  U. B ) )
23 elsuci 4458 . . . 4  |-  ( x  e.  suc  U. B  ->  ( x  e.  U. B  \/  x  =  U. B ) )
24 eloni 4402 . . . . . . . 8  |-  ( B  e.  On  ->  Ord  B )
25 orduniss 4487 . . . . . . . 8  |-  ( Ord 
B  ->  U. B  C_  B )
2624, 25syl 15 . . . . . . 7  |-  ( B  e.  On  ->  U. B  C_  B )
27 bastg 16704 . . . . . . 7  |-  ( B  e.  On  ->  B  C_  ( topGen `  B )
)
2826, 27sstrd 3189 . . . . . 6  |-  ( B  e.  On  ->  U. B  C_  ( topGen `  B )
)
2928sseld 3179 . . . . 5  |-  ( B  e.  On  ->  (
x  e.  U. B  ->  x  e.  ( topGen `  B ) ) )
30 ssid 3197 . . . . . . 7  |-  B  C_  B
31 eltg3i 16699 . . . . . . 7  |-  ( ( B  e.  On  /\  B  C_  B )  ->  U. B  e.  ( topGen `
 B ) )
3230, 31mpan2 652 . . . . . 6  |-  ( B  e.  On  ->  U. B  e.  ( topGen `  B )
)
33 eleq1a 2352 . . . . . 6  |-  ( U. B  e.  ( topGen `  B )  ->  (
x  =  U. B  ->  x  e.  ( topGen `  B ) ) )
3432, 33syl 15 . . . . 5  |-  ( B  e.  On  ->  (
x  =  U. B  ->  x  e.  ( topGen `  B ) ) )
3529, 34jaod 369 . . . 4  |-  ( B  e.  On  ->  (
( x  e.  U. B  \/  x  =  U. B )  ->  x  e.  ( topGen `  B )
) )
3623, 35syl5 28 . . 3  |-  ( B  e.  On  ->  (
x  e.  suc  U. B  ->  x  e.  (
topGen `  B ) ) )
3722, 36impbid 183 . 2  |-  ( B  e.  On  ->  (
x  e.  ( topGen `  B )  <->  x  e.  suc  U. B ) )
3837eqrdv 2281 1  |-  ( B  e.  On  ->  ( topGen `
 B )  =  suc  U. B )
Colors of variables: wff set class
Syntax hints:    -> wi 4    \/ wo 357    /\ wa 358    = wceq 1623    e. wcel 1684   _Vcvv 2788    i^i cin 3151    C_ wss 3152   ~Pcpw 3625   U.cuni 3827   Ord word 4391   Oncon0 4392   suc csuc 4394   ` cfv 5255   topGenctg 13342
This theorem is referenced by:  ontgsucval  24871
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-rex 2549  df-rab 2552  df-v 2790  df-sbc 2992  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-we 4354  df-ord 4395  df-on 4396  df-suc 4398  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-iota 5219  df-fun 5257  df-fv 5263  df-topgen 13344
  Copyright terms: Public domain W3C validator