Users' Mathboxes Mathbox for Chen-Pang He < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ontopbas Unicode version

Theorem ontopbas 24867
Description: An ordinal number is a topological basis. (Contributed by Chen-Pang He, 8-Oct-2015.)
Assertion
Ref Expression
ontopbas  |-  ( B  e.  On  ->  B  e. 
TopBases )

Proof of Theorem ontopbas
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 onelon 4417 . . . . . . . 8  |-  ( ( B  e.  On  /\  x  e.  B )  ->  x  e.  On )
2 onelon 4417 . . . . . . . 8  |-  ( ( B  e.  On  /\  y  e.  B )  ->  y  e.  On )
31, 2anim12dan 810 . . . . . . 7  |-  ( ( B  e.  On  /\  ( x  e.  B  /\  y  e.  B
) )  ->  (
x  e.  On  /\  y  e.  On )
)
43ex 423 . . . . . 6  |-  ( B  e.  On  ->  (
( x  e.  B  /\  y  e.  B
)  ->  ( x  e.  On  /\  y  e.  On ) ) )
5 onin 4423 . . . . . 6  |-  ( ( x  e.  On  /\  y  e.  On )  ->  ( x  i^i  y
)  e.  On )
64, 5syl6 29 . . . . 5  |-  ( B  e.  On  ->  (
( x  e.  B  /\  y  e.  B
)  ->  ( x  i^i  y )  e.  On ) )
76anc2ri 541 . . . 4  |-  ( B  e.  On  ->  (
( x  e.  B  /\  y  e.  B
)  ->  ( (
x  i^i  y )  e.  On  /\  B  e.  On ) ) )
8 inss1 3389 . . . . . . 7  |-  ( x  i^i  y )  C_  x
98jctl 525 . . . . . 6  |-  ( x  e.  B  ->  (
( x  i^i  y
)  C_  x  /\  x  e.  B )
)
109adantr 451 . . . . 5  |-  ( ( x  e.  B  /\  y  e.  B )  ->  ( ( x  i^i  y )  C_  x  /\  x  e.  B
) )
1110a1i 10 . . . 4  |-  ( B  e.  On  ->  (
( x  e.  B  /\  y  e.  B
)  ->  ( (
x  i^i  y )  C_  x  /\  x  e.  B ) ) )
12 ontr2 4439 . . . 4  |-  ( ( ( x  i^i  y
)  e.  On  /\  B  e.  On )  ->  ( ( ( x  i^i  y )  C_  x  /\  x  e.  B
)  ->  ( x  i^i  y )  e.  B
) )
137, 11, 12syl6c 60 . . 3  |-  ( B  e.  On  ->  (
( x  e.  B  /\  y  e.  B
)  ->  ( x  i^i  y )  e.  B
) )
1413ralrimivv 2634 . 2  |-  ( B  e.  On  ->  A. x  e.  B  A. y  e.  B  ( x  i^i  y )  e.  B
)
15 fiinbas 16690 . 2  |-  ( ( B  e.  On  /\  A. x  e.  B  A. y  e.  B  (
x  i^i  y )  e.  B )  ->  B  e. 
TopBases )
1614, 15mpdan 649 1  |-  ( B  e.  On  ->  B  e. 
TopBases )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    e. wcel 1684   A.wral 2543    i^i cin 3151    C_ wss 3152   Oncon0 4392   TopBasesctb 16635
This theorem is referenced by:  onsstopbas  24868  onsuctop  24872
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-sep 4141  ax-nul 4149  ax-pr 4214
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-rex 2549  df-rab 2552  df-v 2790  df-sbc 2992  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-op 3649  df-uni 3828  df-br 4024  df-opab 4078  df-tr 4114  df-eprel 4305  df-po 4314  df-so 4315  df-fr 4352  df-we 4354  df-ord 4395  df-on 4396  df-bases 16638
  Copyright terms: Public domain W3C validator