MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ontrci Unicode version

Theorem ontrci 4514
Description: An ordinal number is a transitive class. (Contributed by NM, 11-Jun-1994.)
Hypothesis
Ref Expression
on.1  |-  A  e.  On
Assertion
Ref Expression
ontrci  |-  Tr  A

Proof of Theorem ontrci
StepHypRef Expression
1 on.1 . . 3  |-  A  e.  On
21onordi 4513 . 2  |-  Ord  A
3 ordtr 4422 . 2  |-  ( Ord 
A  ->  Tr  A
)
42, 3ax-mp 8 1  |-  Tr  A
Colors of variables: wff set class
Syntax hints:    e. wcel 1696   Tr wtr 4129   Ord word 4407   Oncon0 4408
This theorem is referenced by:  onunisuci  4522  hfuni  24886
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ral 2561  df-rex 2562  df-v 2803  df-in 3172  df-ss 3179  df-uni 3844  df-tr 4130  df-po 4330  df-so 4331  df-fr 4368  df-we 4370  df-ord 4411  df-on 4412
  Copyright terms: Public domain W3C validator