Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  op0cl Structured version   Unicode version

Theorem op0cl 30044
Description: An orthoposet has a zero element. (h0elch 22759 analog.) (Contributed by NM, 12-Oct-2011.)
Hypotheses
Ref Expression
op0cl.b  |-  B  =  ( Base `  K
)
op0cl.z  |-  .0.  =  ( 0. `  K )
Assertion
Ref Expression
op0cl  |-  ( K  e.  OP  ->  .0.  e.  B )

Proof of Theorem op0cl
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 op0cl.b . . 3  |-  B  =  ( Base `  K
)
2 eqid 2438 . . 3  |-  ( le
`  K )  =  ( le `  K
)
3 eqid 2438 . . 3  |-  ( oc
`  K )  =  ( oc `  K
)
4 eqid 2438 . . 3  |-  ( join `  K )  =  (
join `  K )
5 eqid 2438 . . 3  |-  ( meet `  K )  =  (
meet `  K )
6 op0cl.z . . 3  |-  .0.  =  ( 0. `  K )
7 eqid 2438 . . 3  |-  ( 1.
`  K )  =  ( 1. `  K
)
81, 2, 3, 4, 5, 6, 7isopos 30040 . 2  |-  ( K  e.  OP  <->  ( ( K  e.  Poset  /\  .0.  e.  B  /\  ( 1. `  K )  e.  B )  /\  A. x  e.  B  A. y  e.  B  (
( ( ( oc
`  K ) `  x )  e.  B  /\  ( ( oc `  K ) `  (
( oc `  K
) `  x )
)  =  x  /\  ( x ( le
`  K ) y  ->  ( ( oc
`  K ) `  y ) ( le
`  K ) ( ( oc `  K
) `  x )
) )  /\  (
x ( join `  K
) ( ( oc
`  K ) `  x ) )  =  ( 1. `  K
)  /\  ( x
( meet `  K )
( ( oc `  K ) `  x
) )  =  .0.  ) ) )
9 simpl2 962 . 2  |-  ( ( ( K  e.  Poset  /\  .0.  e.  B  /\  ( 1. `  K )  e.  B )  /\  A. x  e.  B  A. y  e.  B  (
( ( ( oc
`  K ) `  x )  e.  B  /\  ( ( oc `  K ) `  (
( oc `  K
) `  x )
)  =  x  /\  ( x ( le
`  K ) y  ->  ( ( oc
`  K ) `  y ) ( le
`  K ) ( ( oc `  K
) `  x )
) )  /\  (
x ( join `  K
) ( ( oc
`  K ) `  x ) )  =  ( 1. `  K
)  /\  ( x
( meet `  K )
( ( oc `  K ) `  x
) )  =  .0.  ) )  ->  .0.  e.  B )
108, 9sylbi 189 1  |-  ( K  e.  OP  ->  .0.  e.  B )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 360    /\ w3a 937    = wceq 1653    e. wcel 1726   A.wral 2707   class class class wbr 4214   ` cfv 5456  (class class class)co 6083   Basecbs 13471   lecple 13538   occoc 13539   Posetcpo 14399   joincjn 14403   meetcmee 14404   0.cp0 14468   1.cp1 14469   OPcops 30032
This theorem is referenced by:  op0le  30046  ople0  30047  lub0N  30049  opltn0  30050  opoc1  30062  opoc0  30063  olj01  30085  olj02  30086  olm01  30096  olm02  30097  0ltat  30151  leatb  30152  hlhgt2  30248  hl0lt1N  30249  hl2at  30264  atcvr0eq  30285  lnnat  30286  atle  30295  athgt  30315  1cvratex  30332  ps-2  30337  dalemcea  30519  pmapeq0  30625  2atm2atN  30644  lhp0lt  30862  lhpn0  30863  ltrnatb  30996  ltrnmw  31010  cdleme3c  31089  cdleme7e  31106  dia0eldmN  31900  dia2dimlem2  31925  dia2dimlem3  31926  dib0  32024  dih0  32140  dih0bN  32141  dih0rn  32144  dihlspsnssN  32192  dihlspsnat  32193  dihatexv  32198
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2419  ax-nul 4340
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2287  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-ral 2712  df-rex 2713  df-rab 2716  df-v 2960  df-sbc 3164  df-dif 3325  df-un 3327  df-in 3329  df-ss 3336  df-nul 3631  df-if 3742  df-sn 3822  df-pr 3823  df-op 3825  df-uni 4018  df-br 4215  df-iota 5420  df-fv 5464  df-ov 6086  df-oposet 30036
  Copyright terms: Public domain W3C validator