MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  opabbi2dv Unicode version

Theorem opabbi2dv 4912
Description: Deduce equality of a relation and an ordered-pair class builder. Compare abbi2dv 2473. (Contributed by NM, 24-Feb-2014.)
Hypotheses
Ref Expression
opabbi2dv.1  |-  Rel  A
opabbi2dv.3  |-  ( ph  ->  ( <. x ,  y
>.  e.  A  <->  ps )
)
Assertion
Ref Expression
opabbi2dv  |-  ( ph  ->  A  =  { <. x ,  y >.  |  ps } )
Distinct variable groups:    x, y, A    ph, x, y
Allowed substitution hints:    ps( x, y)

Proof of Theorem opabbi2dv
StepHypRef Expression
1 opabbi2dv.1 . . 3  |-  Rel  A
2 opabid2 4894 . . 3  |-  ( Rel 
A  ->  { <. x ,  y >.  |  <. x ,  y >.  e.  A }  =  A )
31, 2ax-mp 8 . 2  |-  { <. x ,  y >.  |  <. x ,  y >.  e.  A }  =  A
4 opabbi2dv.3 . . 3  |-  ( ph  ->  ( <. x ,  y
>.  e.  A  <->  ps )
)
54opabbidv 4161 . 2  |-  ( ph  ->  { <. x ,  y
>.  |  <. x ,  y >.  e.  A }  =  { <. x ,  y >.  |  ps } )
63, 5syl5eqr 2404 1  |-  ( ph  ->  A  =  { <. x ,  y >.  |  ps } )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    = wceq 1642    e. wcel 1710   <.cop 3719   {copab 4155   Rel wrel 4773
This theorem is referenced by:  recmulnq  8675  dib1dim  31407
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-14 1714  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1930  ax-ext 2339  ax-sep 4220  ax-nul 4228  ax-pr 4293
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-eu 2213  df-mo 2214  df-clab 2345  df-cleq 2351  df-clel 2354  df-nfc 2483  df-ne 2523  df-ral 2624  df-rex 2625  df-rab 2628  df-v 2866  df-dif 3231  df-un 3233  df-in 3235  df-ss 3242  df-nul 3532  df-if 3642  df-sn 3722  df-pr 3723  df-op 3725  df-opab 4157  df-xp 4774  df-rel 4775
  Copyright terms: Public domain W3C validator