MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  opabbid Unicode version

Theorem opabbid 4097
Description: Equivalent wff's yield equal ordered-pair class abstractions (deduction rule). (Contributed by NM, 21-Feb-2004.) (Proof shortened by Andrew Salmon, 9-Jul-2011.)
Hypotheses
Ref Expression
opabbid.1  |-  F/ x ph
opabbid.2  |-  F/ y
ph
opabbid.3  |-  ( ph  ->  ( ps  <->  ch )
)
Assertion
Ref Expression
opabbid  |-  ( ph  ->  { <. x ,  y
>.  |  ps }  =  { <. x ,  y
>.  |  ch } )

Proof of Theorem opabbid
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 opabbid.1 . . . 4  |-  F/ x ph
2 opabbid.2 . . . . 5  |-  F/ y
ph
3 opabbid.3 . . . . . 6  |-  ( ph  ->  ( ps  <->  ch )
)
43anbi2d 684 . . . . 5  |-  ( ph  ->  ( ( z  = 
<. x ,  y >.  /\  ps )  <->  ( z  =  <. x ,  y
>.  /\  ch ) ) )
52, 4exbid 1765 . . . 4  |-  ( ph  ->  ( E. y ( z  =  <. x ,  y >.  /\  ps ) 
<->  E. y ( z  =  <. x ,  y
>.  /\  ch ) ) )
61, 5exbid 1765 . . 3  |-  ( ph  ->  ( E. x E. y ( z  = 
<. x ,  y >.  /\  ps )  <->  E. x E. y ( z  = 
<. x ,  y >.  /\  ch ) ) )
76abbidv 2410 . 2  |-  ( ph  ->  { z  |  E. x E. y ( z  =  <. x ,  y
>.  /\  ps ) }  =  { z  |  E. x E. y
( z  =  <. x ,  y >.  /\  ch ) } )
8 df-opab 4094 . 2  |-  { <. x ,  y >.  |  ps }  =  { z  |  E. x E. y
( z  =  <. x ,  y >.  /\  ps ) }
9 df-opab 4094 . 2  |-  { <. x ,  y >.  |  ch }  =  { z  |  E. x E. y
( z  =  <. x ,  y >.  /\  ch ) }
107, 8, 93eqtr4g 2353 1  |-  ( ph  ->  { <. x ,  y
>.  |  ps }  =  { <. x ,  y
>.  |  ch } )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358   E.wex 1531   F/wnf 1534    = wceq 1632   {cab 2282   <.cop 3656   {copab 4092
This theorem is referenced by:  opabbidv  4098  mpteq12f  4112  fnoprabg  5961  feqmptdf  23243  mpteq12d  24199
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277
This theorem depends on definitions:  df-bi 177  df-an 360  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-clab 2283  df-cleq 2289  df-opab 4094
  Copyright terms: Public domain W3C validator