MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  opabex3 Structured version   Unicode version

Theorem opabex3 5990
Description: Existence of an ordered pair abstraction. (Contributed by Jeff Madsen, 2-Sep-2009.)
Hypotheses
Ref Expression
opabex3.1  |-  A  e. 
_V
opabex3.2  |-  ( x  e.  A  ->  { y  |  ph }  e.  _V )
Assertion
Ref Expression
opabex3  |-  { <. x ,  y >.  |  ( x  e.  A  /\  ph ) }  e.  _V
Distinct variable group:    x, A, y
Allowed substitution hints:    ph( x, y)

Proof of Theorem opabex3
Dummy variables  v  w  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 19.42v 1928 . . . . . 6  |-  ( E. y ( x  e.  A  /\  ( z  =  <. x ,  y
>.  /\  ph ) )  <-> 
( x  e.  A  /\  E. y ( z  =  <. x ,  y
>.  /\  ph ) ) )
2 an12 773 . . . . . . 7  |-  ( ( z  =  <. x ,  y >.  /\  (
x  e.  A  /\  ph ) )  <->  ( x  e.  A  /\  (
z  =  <. x ,  y >.  /\  ph ) ) )
32exbii 1592 . . . . . 6  |-  ( E. y ( z  = 
<. x ,  y >.  /\  ( x  e.  A  /\  ph ) )  <->  E. y
( x  e.  A  /\  ( z  =  <. x ,  y >.  /\  ph ) ) )
4 elxp 4895 . . . . . . . 8  |-  ( z  e.  ( { x }  X.  { y  | 
ph } )  <->  E. v E. w ( z  = 
<. v ,  w >.  /\  ( v  e.  {
x }  /\  w  e.  { y  |  ph } ) ) )
5 excom 1756 . . . . . . . . 9  |-  ( E. v E. w ( z  =  <. v ,  w >.  /\  (
v  e.  { x }  /\  w  e.  {
y  |  ph }
) )  <->  E. w E. v ( z  = 
<. v ,  w >.  /\  ( v  e.  {
x }  /\  w  e.  { y  |  ph } ) ) )
6 an12 773 . . . . . . . . . . . . 13  |-  ( ( z  =  <. v ,  w >.  /\  (
v  e.  { x }  /\  w  e.  {
y  |  ph }
) )  <->  ( v  e.  { x }  /\  ( z  =  <. v ,  w >.  /\  w  e.  { y  |  ph } ) ) )
7 elsn 3829 . . . . . . . . . . . . . 14  |-  ( v  e.  { x }  <->  v  =  x )
87anbi1i 677 . . . . . . . . . . . . 13  |-  ( ( v  e.  { x }  /\  ( z  = 
<. v ,  w >.  /\  w  e.  { y  |  ph } ) )  <->  ( v  =  x  /\  ( z  =  <. v ,  w >.  /\  w  e.  {
y  |  ph }
) ) )
96, 8bitri 241 . . . . . . . . . . . 12  |-  ( ( z  =  <. v ,  w >.  /\  (
v  e.  { x }  /\  w  e.  {
y  |  ph }
) )  <->  ( v  =  x  /\  (
z  =  <. v ,  w >.  /\  w  e.  { y  |  ph } ) ) )
109exbii 1592 . . . . . . . . . . 11  |-  ( E. v ( z  = 
<. v ,  w >.  /\  ( v  e.  {
x }  /\  w  e.  { y  |  ph } ) )  <->  E. v
( v  =  x  /\  ( z  = 
<. v ,  w >.  /\  w  e.  { y  |  ph } ) ) )
11 vex 2959 . . . . . . . . . . . 12  |-  x  e. 
_V
12 opeq1 3984 . . . . . . . . . . . . . 14  |-  ( v  =  x  ->  <. v ,  w >.  =  <. x ,  w >. )
1312eqeq2d 2447 . . . . . . . . . . . . 13  |-  ( v  =  x  ->  (
z  =  <. v ,  w >.  <->  z  =  <. x ,  w >. )
)
1413anbi1d 686 . . . . . . . . . . . 12  |-  ( v  =  x  ->  (
( z  =  <. v ,  w >.  /\  w  e.  { y  |  ph } )  <->  ( z  =  <. x ,  w >.  /\  w  e.  {
y  |  ph }
) ) )
1511, 14ceqsexv 2991 . . . . . . . . . . 11  |-  ( E. v ( v  =  x  /\  ( z  =  <. v ,  w >.  /\  w  e.  {
y  |  ph }
) )  <->  ( z  =  <. x ,  w >.  /\  w  e.  {
y  |  ph }
) )
1610, 15bitri 241 . . . . . . . . . 10  |-  ( E. v ( z  = 
<. v ,  w >.  /\  ( v  e.  {
x }  /\  w  e.  { y  |  ph } ) )  <->  ( z  =  <. x ,  w >.  /\  w  e.  {
y  |  ph }
) )
1716exbii 1592 . . . . . . . . 9  |-  ( E. w E. v ( z  =  <. v ,  w >.  /\  (
v  e.  { x }  /\  w  e.  {
y  |  ph }
) )  <->  E. w
( z  =  <. x ,  w >.  /\  w  e.  { y  |  ph } ) )
185, 17bitri 241 . . . . . . . 8  |-  ( E. v E. w ( z  =  <. v ,  w >.  /\  (
v  e.  { x }  /\  w  e.  {
y  |  ph }
) )  <->  E. w
( z  =  <. x ,  w >.  /\  w  e.  { y  |  ph } ) )
19 nfv 1629 . . . . . . . . . 10  |-  F/ y  z  =  <. x ,  w >.
20 nfsab1 2426 . . . . . . . . . 10  |-  F/ y  w  e.  { y  |  ph }
2119, 20nfan 1846 . . . . . . . . 9  |-  F/ y ( z  =  <. x ,  w >.  /\  w  e.  { y  |  ph } )
22 nfv 1629 . . . . . . . . 9  |-  F/ w
( z  =  <. x ,  y >.  /\  ph )
23 opeq2 3985 . . . . . . . . . . 11  |-  ( w  =  y  ->  <. x ,  w >.  =  <. x ,  y >. )
2423eqeq2d 2447 . . . . . . . . . 10  |-  ( w  =  y  ->  (
z  =  <. x ,  w >.  <->  z  =  <. x ,  y >. )
)
25 sbequ12 1944 . . . . . . . . . . . 12  |-  ( y  =  w  ->  ( ph 
<->  [ w  /  y ] ph ) )
2625equcoms 1693 . . . . . . . . . . 11  |-  ( w  =  y  ->  ( ph 
<->  [ w  /  y ] ph ) )
27 df-clab 2423 . . . . . . . . . . 11  |-  ( w  e.  { y  | 
ph }  <->  [ w  /  y ] ph )
2826, 27syl6rbbr 256 . . . . . . . . . 10  |-  ( w  =  y  ->  (
w  e.  { y  |  ph }  <->  ph ) )
2924, 28anbi12d 692 . . . . . . . . 9  |-  ( w  =  y  ->  (
( z  =  <. x ,  w >.  /\  w  e.  { y  |  ph } )  <->  ( z  =  <. x ,  y
>.  /\  ph ) ) )
3021, 22, 29cbvex 1983 . . . . . . . 8  |-  ( E. w ( z  = 
<. x ,  w >.  /\  w  e.  { y  |  ph } )  <->  E. y ( z  = 
<. x ,  y >.  /\  ph ) )
314, 18, 303bitri 263 . . . . . . 7  |-  ( z  e.  ( { x }  X.  { y  | 
ph } )  <->  E. y
( z  =  <. x ,  y >.  /\  ph ) )
3231anbi2i 676 . . . . . 6  |-  ( ( x  e.  A  /\  z  e.  ( {
x }  X.  {
y  |  ph }
) )  <->  ( x  e.  A  /\  E. y
( z  =  <. x ,  y >.  /\  ph ) ) )
331, 3, 323bitr4ri 270 . . . . 5  |-  ( ( x  e.  A  /\  z  e.  ( {
x }  X.  {
y  |  ph }
) )  <->  E. y
( z  =  <. x ,  y >.  /\  (
x  e.  A  /\  ph ) ) )
3433exbii 1592 . . . 4  |-  ( E. x ( x  e.  A  /\  z  e.  ( { x }  X.  { y  |  ph } ) )  <->  E. x E. y ( z  = 
<. x ,  y >.  /\  ( x  e.  A  /\  ph ) ) )
35 eliun 4097 . . . . 5  |-  ( z  e.  U_ x  e.  A  ( { x }  X.  { y  | 
ph } )  <->  E. x  e.  A  z  e.  ( { x }  X.  { y  |  ph } ) )
36 df-rex 2711 . . . . 5  |-  ( E. x  e.  A  z  e.  ( { x }  X.  { y  | 
ph } )  <->  E. x
( x  e.  A  /\  z  e.  ( { x }  X.  { y  |  ph } ) ) )
3735, 36bitri 241 . . . 4  |-  ( z  e.  U_ x  e.  A  ( { x }  X.  { y  | 
ph } )  <->  E. x
( x  e.  A  /\  z  e.  ( { x }  X.  { y  |  ph } ) ) )
38 elopab 4462 . . . 4  |-  ( z  e.  { <. x ,  y >.  |  ( x  e.  A  /\  ph ) }  <->  E. x E. y ( z  = 
<. x ,  y >.  /\  ( x  e.  A  /\  ph ) ) )
3934, 37, 383bitr4i 269 . . 3  |-  ( z  e.  U_ x  e.  A  ( { x }  X.  { y  | 
ph } )  <->  z  e.  {
<. x ,  y >.  |  ( x  e.  A  /\  ph ) } )
4039eqriv 2433 . 2  |-  U_ x  e.  A  ( {
x }  X.  {
y  |  ph }
)  =  { <. x ,  y >.  |  ( x  e.  A  /\  ph ) }
41 opabex3.1 . . 3  |-  A  e. 
_V
42 snex 4405 . . . . 5  |-  { x }  e.  _V
43 opabex3.2 . . . . 5  |-  ( x  e.  A  ->  { y  |  ph }  e.  _V )
44 xpexg 4989 . . . . 5  |-  ( ( { x }  e.  _V  /\  { y  | 
ph }  e.  _V )  ->  ( { x }  X.  { y  | 
ph } )  e. 
_V )
4542, 43, 44sylancr 645 . . . 4  |-  ( x  e.  A  ->  ( { x }  X.  { y  |  ph } )  e.  _V )
4645rgen 2771 . . 3  |-  A. x  e.  A  ( {
x }  X.  {
y  |  ph }
)  e.  _V
47 iunexg 5987 . . 3  |-  ( ( A  e.  _V  /\  A. x  e.  A  ( { x }  X.  { y  |  ph } )  e.  _V )  ->  U_ x  e.  A  ( { x }  X.  { y  |  ph } )  e.  _V )
4841, 46, 47mp2an 654 . 2  |-  U_ x  e.  A  ( {
x }  X.  {
y  |  ph }
)  e.  _V
4940, 48eqeltrri 2507 1  |-  { <. x ,  y >.  |  ( x  e.  A  /\  ph ) }  e.  _V
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359   E.wex 1550    = wceq 1652   [wsb 1658    e. wcel 1725   {cab 2422   A.wral 2705   E.wrex 2706   _Vcvv 2956   {csn 3814   <.cop 3817   U_ciun 4093   {copab 4265    X. cxp 4876
This theorem is referenced by:  dvdsrval  15750
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2417  ax-rep 4320  ax-sep 4330  ax-nul 4338  ax-pow 4377  ax-pr 4403  ax-un 4701
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2285  df-mo 2286  df-clab 2423  df-cleq 2429  df-clel 2432  df-nfc 2561  df-ne 2601  df-ral 2710  df-rex 2711  df-reu 2712  df-rab 2714  df-v 2958  df-sbc 3162  df-csb 3252  df-dif 3323  df-un 3325  df-in 3327  df-ss 3334  df-nul 3629  df-if 3740  df-pw 3801  df-sn 3820  df-pr 3821  df-op 3823  df-uni 4016  df-iun 4095  df-br 4213  df-opab 4267  df-mpt 4268  df-id 4498  df-xp 4884  df-rel 4885  df-cnv 4886  df-co 4887  df-dm 4888  df-rn 4889  df-res 4890  df-ima 4891  df-iota 5418  df-fun 5456  df-fn 5457  df-f 5458  df-f1 5459  df-fo 5460  df-f1o 5461  df-fv 5462
  Copyright terms: Public domain W3C validator